ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-03-15
    Description: Coccolithophores are important oceanic primary producers not only in terms of photosynthesis but also because they produce calcite plates called coccoliths. Ongoing ocean acidification associated with changing seawater carbonate chemistry may impair calcification and other metabolic functions in coccolithophores. While short‐term ocean acidification effects on calcification and other properties have been examined in a variety of coccolithophore species, long‐term adaptive responses have scarcely been documented, other than for the single species Emiliania huxleyi . Here, we investigated the effects of ocean acidification on another ecologically important coccolithophore species, Gephyrocapsa oceanica, following 1,000 generations of growth under elevated CO2 conditions (1,000 μatm). High CO2‐selected populations exhibited reduced growth rates and enhanced particulate organic carbon (POC ) and nitrogen (PON ) production, relative to populations selected under ambient CO2 (400 μatm). Particulate inorganic carbon (PIC ) and PIC /POC ratios decreased progressively throughout the selection period in high CO2‐selected cell lines. All of these trait changes persisted when high CO2‐grown populations were moved back to ambient CO2 conditions for about 10 generations. The results suggest that the calcification of some coccolithophores may be more heavily impaired by ocean acidification than previously predicted based on short‐term studies, with potentially large implications for the ocean's carbon cycle under accelerating anthropogenic influences.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate, per cell; Carbon, organic, particulate, per cell; Carbon/Nitrogen ratio; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Chromista; Day of experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Nitrogen, organic, particulate, per cell; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; pH; pH, standard deviation; Phytoplankton; Potentiometric; Registration number of species; Replicate; Salinity; Single species; Species; Temperature, water; Treatment; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 12720 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...