ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air that frequently moves westward off of the Saharan desert of Africa and over the tropical Atlantic Ocean, has long been appreciated. As air moves over the desert, it is strongly heated from below, producing a very hot air mass at low levels. Because there is no moisture source over the Sahara, the rise in temperature causes a sharp drop in relative humidity, thus drying the air. In addition, the warm air produces a very strong jet of easterly flow in the middle troposphere called the African easterly jet that is thought to play a critical role in hurricane formation. In recent years, there has been an increased focus on the impact that the SAL has on the formation and evolution of hurricanes in the Atlantic. However, the nature of its impact remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The argument for positively influencing hurricane development is based upon the fact that the African easterly jet produces the waves that eventually form hurricanes and that it leads to rising motion south of the jet that favors the development of deep thunderstorm clouds. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm SAL air aloft, which increases thermodynamic stability and suppresses cloud development; and 3) dry air, which produces cold downdrafts in precipitating regions, thereby removing energy needed for storm development. As part of this recent focus on the SAL and hurricanes (which motivated a 2006 NASA field experiment), there has been little emphasis on the SAL s potential positive influences and almost complete emphasis on its possible negative influences, almost to the point of claims that the SAL is the major suppressing influence on hurricanes in the Atlantic. Multiple NASA satellite data sets (TRMM, MODIS, and AIRS/AMSU) and National Centers for Environmental Prediction global analyses are used to characterize the SAL s properties and evolution in relation to developing hurricanes. The results show that storms generally form on the southern side of the jet, where favorable background rotation is high. The jet often helps to form the northern side of the storms and rarely moves over their inner cores, so jet-induced vertical wind shear does not appear to be a negative influence on developing storms. Warm SAL air is confined to regions north of the jet and generally does not impact the tropical cyclone precipitation south of the jet. Of the three proposed negative influences, dry air appears to be the key influence; however, the presence of dry SAL air is not a good indicator of whether a storm will weaken since many examples of intensifying storms surrounded by such dry air can be found. In addition, a global view of relative humidity shows moisture distributions in other ocean basins that are almost identical to the Atlantic. The dry zones correspond to regions of descending air on the eastern and equatorward sides of semi-permanent oceanic high pressure systems. Thus, the dry air over the Atlantic appears to be primarily a product of the large-scale flow, but with enhanced drying at low levels associated with the Sahara. As a result, we conclude that the SAL is not a major negative influence on hurricanes. It is just one of many possible influences and can be both positive and negative.
    Keywords: Meteorology and Climatology
    Type: To be published in Bulletin of the American Meteorologial Society
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...