ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: It is well known that many chlorine and bromine compounds that are inert in the troposphere are destroyed in the stratosphere and contribute to the stratospheric burden of reactive chlorine and bromine species. But the contribution from those chlorine and bromine compounds which are reactive in the troposphere is less certain because it is not known whether convection can transport these gases to the upper troposphere rapidly enough to overcome their short tropospheric lifetimes. We examine this issue using a three-dimensional chemistry and transport model to simulate the evolution of three gases which have surface sources, bromoform (CHBr3), methyl chloroform (CH3CCl3), and carbon dioxide (CO2). Our objective is to determine if CHBr3 might enhance the lower stratospheric burden of reactive bromine. The other two gases provide tests of the quality of the simulation. Both CHBr3 and CH3CCl3 are destroyed in the troposphere by reaction with hydroxyl (OH), whose latitudinal and monthly variation is provided by a two-dimensional model and upon which a diurnal variation is imposed. Comparison of the lifetime of CH3CCl3 computed from observations (5 years) with the lifetime computed from the simulation provides an integrated test of the model's transport and photochemistry. Observations also show that CO2 exhibits a strong seasonal cycle in the northern hemisphere troposphere that is not propagated directly across the tropopause into the lower stratosphere. Thus, maintenance of the observed troposphere-stratosphere distinctness of CO2 in the presence of convection is a critical benchmark for meeting our objective.
    Keywords: Geophysics
    Type: Special Session A04: constituent Transport in the Troposphere and Lower Stratosphere; May 30, 2000 - Jun 03, 2000; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...