ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: Collection of electrons by a satellite at a relatively high potential in low Earth orbit, including the effects of the satellite's orbital motion, remains a poorly understood phenomenon. Using a test particle simulation in which charged particle motion is tracked in prescribed electric fields, we calculate here the current collection and the nature of the energy distribution function of the electrons collected by the satellite, including the effects of the satellite orbital motion. Calculations of the collected current without the orbital motion show an excellent agreement with the current from the Parker-Murphy model, but with the orbital motion of the satellite the current collection is enhanced, the degree of enhancement depending on the size of the satellite sheath extending along the magnetic field line. In the latter case, the flow of electrons around the satellite shows some interesting behaviors including azimuthal E x B drift around the satellite, axial trapping along the magnetic field, and formation of field-aligned flow of electrons in the wake region. The total energy of the collected electrons is approximately equal e phi(sub 0), where phi(sub 0) is the satellite potential, but the partition of the energy into components parallel (W(sub parallel)) and perpendicular (W(sub perpendicular)) to the magnetic field shows interesting features. For the magnetic field along the polar axis Z, the energy distributions near the poles are perfectly field aligned, that is, the parallel energy (W(sub parallel) = e phi(sub 0). The perpendicular component (W(sub perpendicular)) progressively increases toward the 'equator' of the spherical satellite. For a sufficiently large bias potential phi(sub 0), the equatorial energy distributions f(W(sub parallel)) and f(W(sub perpendicular)) show fine structures having multiple peaks. These features of the distribution functions result from the chaotic motion of electrons and the associated coupling between the electron motions parallel and perpendicular to the magnetic field in strongly nonuniform electric fields near the satellite.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 469-478
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...