ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 21 (2005), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. The effects of nitrogen fertilizer and tillage systems on soil organic carbon (SOC) storage have been tested in many field experiments worldwide. The published results of this research are here compiled for evaluation of the impact of management practices on carbon sequestration. Paired data from 137 sites with varying nitrogen rates and 161 sites with contrasting tillage systems were included. Nitrogen fertilizer increased SOC but only when crop residues were returned to the soil; a multiple regression model accounted for just over half the variance (R2=0.56, P=0.001). The model included as independent variables: cumulative nitrogen fertilizer rate; rainfall; temperature; soil texture; and a cropping intensity index, calculated as a combination of the number of crops per year and percentage of corn in the rotation. Carbon sequestration increased as more nitrogen was applied to the system, and as rainfall or cropping intensity increased. At sites with higher mean temperatures and also in fine textured soils, carbon sequestration decreased. When the carbon costs of production, transportation and application of fertilizer are subtracted from the carbon sequestration predicted by the model, it appears that nitrogen fertilizer-use in tropical regions results in no additional carbon sequestration, whereas in temperate climates, it appears to promote net carbon sequestration. No differences in SOC were found between reduced till (chisel, disc, and sweep till) and no-till, whereas conventional tillage (mouldboard plough, disc plough) was associated with less SOC. The accumulation of SOC under conservation tillage (reduced and no till) was an S-shape time dependent process, which reached a steady state after 25–30 years, but this relationship only accounted for 26% of the variance. Averaging out SOC differences in all the experiments under conservation tillage, there was an increase of 2.1 t C ha−1 over ploughing. However, when only those cases that had apparently reached equilibrium were included (all no till vs. conventional tillage comparisons from temperate regions), mean SOC increased by approximately 12 t C ha−1. This estimate is larger than others previously reported. Carbon sequestration under conservation tillage was not significantly related to climate, soil texture or rotation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...