ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 36 (1995), S. 4106-4118 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The information entropy of the harmonic oscillator potential V(x)=1/2λx2 in both position and momentum spaces can be expressed in terms of the so-called "entropy of Hermite polynomials,'' i.e., the quantity Sn(H):= −∫−∞+∞H2n(x)log H2n(x) e−x2dx. These polynomials are instances of the polynomials orthogonal with respect to the Freud weights w(x)=exp(−||x||m), m(approximately-greater-than)0. Here, a very precise and general result of the entropy of Freud polynomials recently established by Aptekarev et al. [J. Math. Phys. 35, 4423–4428 (1994)], specialized to the Hermite kernel (case m=2), leads to an important refined asymptotic expression for the information entropies of very excited states (i.e., for large n) in both position and momentum spaces, to be denoted by Sρ and Sγ, respectively. Briefly, it is shown that, for large values of n, Sρ+1/2logλ(approximately-equal-to)log(π(square root of)2n/e)+o(1) and Sγ−1/2log λ(approximately-equal-to)log(π(square root of)2n/e)+o(1), so that Sρ+Sγ(approximately-equal-to)log(2π2n/e2)+o(1) in agreement with the generalized indetermination relation of Byalinicki-Birula and Mycielski [Commun. Math. Phys. 44, 129–132 (1975)]. Finally, the rate of convergence of these two information entropies is numerically analyzed. In addition, using a Rakhmanov result, we describe a totally new proof of the leading term of the entropy of Freud polynomials which, naturally, is just a weak version of the aforementioned general result. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...