ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 5073-5084 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We describe a new multireference perturbation algorithm for ab initio electronic structure calculations, based on a generalized valence bond (GVB) reference system, a local version of second-order Møller–Plesset perturbation theory (LMP2), and pseudospectral (PS) numerical methods. This PS-GVB-LMP2 algorithm is shown to have a computational scaling of approximately N3 with basis set size N, and is readily applicable to medium to large size molecules using workstations with relatively modest memory and disk storage. Furthermore, the PS-GVB-LMP2 method is applicable to an arbitrary molecule in an automated fashion (although specific protocols for resonance interactions must be incorporated) and hence constitutes a well-defined model chemistry, in contrast to some alternative multireference methodologies. A calculation on the alanine dipeptide using the cc-pVTZ(−f) basis set (338 basis functions total) is presented as an example. We then apply the method to the calculation of 36 conformational energy differences assembled by Halgren and co-workers [J. Comput. Chem. 16, 1483 (1995)], where we obtain uniformly good agreement (better than 0.4 kcal/mole) between theory and experiment for all test cases but one, for which it appears as though the experimental measurement is less accurate than the theory. In contrast, quadratic configuration interaction QCISD(T) calculations are, surprisingly, shown to fail badly on one test case, methyl vinyl ether, for which the calculated energy difference is 2.5 kcal/mole and the experimental value is 1.15 kcal/mole. We hypothesize that single reference methods sometimes have difficulties describing multireference character due to low lying excited states in carbon–carbon pi bonds. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...