ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 111 (1999), S. 3357-3364 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The performance of current density functionals is analyzed in detail for the electric field gradients (EFG) of hydrogen chloride and copper chloride by comparison with ab initio methods and available experimental data. The range of density functionals applied shows good agreement with coupled cluster H and Cl field gradients for HCl, as has been demonstrated previously for other main-group element containing compounds. However, the performance of most density functionals is very poor for the Cu EFG in CuCl (EFG for Cu -0.44 a.u. at the coupled-cluster singles and doubles with perturbative triples [CCSD(T)] level, compared to, e.g., +0.54 a.u. at the B-LYP level). Only the "half-and-half" hybrid functionals give field gradients with the correct sign. The reason for the poor performance of the density functional theory is analyzed in detail comparing density functional with ab initio total electronic densities ρ(r). Due to the conservation of the number of particles, a change in the valence part of the electron density can lead to changes in the core part of the density. Errors in valence electronic properties like the dipole moment and in core properties like the Cu and Cl EFGs may therefore be connected. In fact the errors in both properties show a distinct linear relationship, indicating that if the dipole moment is correctly described by density functionals, the Cu and Cl EFGs may be accurate as well. Furthermore, at the atomic level, electric field gradients are described with reasonable accuracy by current density functionals as calculations for the Cu 2P excited state and the Cu2+ 2D ground state show. A comparison between the different density functionals shows that the incorrect behavior of the electronic density appears to be mainly due to defects in the exchange part of the functional.© 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...