ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 6933-6942 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We report a theoretical study of the adsorption behavior of water–methanol mixtures in slit activated carbon micropores. The adsorption isotherms are obtained for a pore of width 2 nm at a temperature of 298 K from grand canonical ensemble Monte Carlo simulations. The water molecules are modeled using the four point transferable intermolecular potential functions (TIP4P) and methanol by the optimized potentials for liquid simulations (OPLS). Carboxyl (COOH) groups are used as active sites on a structured carbon surface. The effect of the relative contributions from dispersion and hydrogen bonding interactions of adsorbates, and of the chemical activation of adsorbents on adsorption behavior is investigated. The adsorption of the mixture components in activated carbon pores occurs by continuous filling, without the sharp capillary condensation observed in graphite pores. Water is preferentially adsorbed over methanol in activated carbon pores for a wide range of pressures, except at lower pressures. The hydrophilic nature of activated carbon pores results in the complexation of both water and methanol molecules with the active sites on the surfaces, leading to bulklike water behavior over the entire pore width. Solvation forces are also calculated as a function of pore size. The negative values found for the solvation force for all pore sizes reflect the hydrophilic interactions of the mixtures with the activated carbon surfaces. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...