ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 96 (1992), S. 218-229 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have used a "half-collision'' pump–probe technique to measure the far wing absorption profiles of the NaH2 collision complex leading to the nonreactive formation of Na* and to four distinct final rotational states of the reaction product NaH(v‘=1, J‘=3, 4, 11, and 13). We have observed reaction on both the attractive potential energy surfaces and over a barrier on the repulsive surface. We have observed the effect of the Na* reagent electronic orbital alignment on the NaH final product rotational state distribution. Specifically, absorption to the repulsive surface leads preferentially to low-rotational product states, while absorption to the attractive surfaces leads preferentially to high-rotational product states of NaH. Isotopic substitution experiments give evidence of a kinematic isotope effect on the product rotational state distribution for reactive trajectories on the repulsive surface. We have developed a simple model using a quantum mechanical line shape calculation to estimate the NaH2 absorption probability as a function of wavelength. We then make simple phenomenological dynamical arguments to predict final state branching. There is an overall qualitative agreement between the experimental results and theoretical model predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...