ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 5194-5196 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this work, the dielectric breakdown in magnetic tunnel junctions (MTJs) was studied. The MTJ structure is Ta50/NiFe100/Co20/AlOx/Co30/RuRhMn100/Ta50 with the bottom lead of Ta50/Cu500/Ta50 and the top lead of Cu2000/Ta50 (in Å), where the tunneling barrier was formed by 2–20 min radical oxygen oxidation of a 10 Å-thick Al layer. The junctions with area from 2×2 to 20×20 μm2 were patterned using the photolithography process, leading to tunneling magnetoresistance up to 17.2% and resistance-area product ranging from 350 Ω μm2 to 200 kΩ μm2. The junctions studied show dc breakdown voltage from 0.7 to 1.3 V, depending on the junction area and the oxidation time. Long oxidation time up to 14 min and a small junction area results in a large dc breakdown voltage. The electrostatic discharge (ESD) of MTJs was tested by using a human body model. The ESD breakdown voltage increases with decreasing junction resistance. These results are discussed in terms of the E-model based on the field-induced distortion of atomic bonds in the oxide barrier. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...