ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 100 (1985), S. 333-362 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Major advances in our understanding of nonradiatively heated outer atmospheric layers (coronae, transition regions, and chromospheres) and other solar-like activity in stars has occurred in the past few years primarily as a result of ultraviolet spectroscopy from IUE, X-ray imaging from the Einstein Observatory, microwave detections by the VLA, and new optical observing techniques. I critically review the observational evidence and comment upon the trends with spectral type, gravity, age, and rotational velocity that are now becoming apparent. I define a solar-like star as one which has a turbulent magnetic field sufficiently strong to control the dynamics and energetics in its outer atmospheric regions. The best indicator of a solar-like star is the direct measurement of a strong, variable magnetic field and such data are now becoming available, but good indirect indicators include photometric variability on a rotational time scale indicating dark starspots and nonthermal microwave emission. X-rays and ultraviolet emission lines produced by plasma hotter than 104 K imply nonradiative heating processes that are likely magnetic in character, except for the hot stars where the heating is likely by shocks in the wind resulting from radiative instabilities. I conclude that dwarf stars of spectral type G-M and rapidly rotating subgiants and giants of spectral type F-K in spectroscopic binary systems are definitely solar-like. Dwarf stars of spectral type A7-F7 are almost certainly solar-like, and T Tauri and other pre-Main-Sequence stars are probably solar-like. Slowly rotating single giants of spectral type F to early K are also probably solar-like, and the helium-strong hottest Bp stars are interesting candidates for being solar-like. The O and B stars exhibit some aspects of activity but probably have weak fields and are not solar-like. Finally, the A dwarfs and the cool giants and supergiants show no evidence of being solar-like.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...