ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0899-0042
    Keywords: microbial chiral inversion ; 2-phenylpropionic acid ; kinetic isotope effect ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Previous investigations have described the development of nongrowing suspension of Verticillium lecanii as a microbial model of the mammalian chiral inversion of the 2-arylpropionic acids (2-APAs). Mechanistic studies in mammals have shown that inversion involves loss of the α-methine proton but retention of the original atoms at the β-methyl position, and a mechanism has been proposed involving enzymatic epimerisation of acyl-CoA thioester derivatives of the substrate. Inversion of the 2-APAs by V. lecanii exhibits extensive intersubstrate variation in the presence, rate, extent, and direction of inversion, which are different from those observed in mammalian systems, possibly indicating differences in the mechanism of inversion between mammalian and microbial cells. This study involved the investigation of proton/deuterium exchange by 1H-nuclear magnetic resonance following incubation of deuterated derivatives of 2-phenylpropionic acid (2-PPA), a model compound, in cell suspensions of V. lecanii and incubation of undeuterated 2-PPA in cell suspensions containing D2O. The results indicated that the inversion of 2-PPA by V. lecanii also involved exchange of the α-methine proton but complete retention on the original atoms at the β-methyl position. No kinetic deuterium isotope effect was observed, indicating that loss of the α-methine proton is not the rate-limiting step of the inversion process. This suggests that the observed differences between microbial and mammalian systems probably involve the stereoselective acyl-CoA thioester formation step and not the subsequent epimerisation of the resultant diastereomers. Chirality 9:254-260, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...