ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 553-586 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article describes the parameterization and performance of MMFF94 for molecular geometries and deformations. It defines the form used for the valence-coordinate terms that represent variations in bond lengths and angles, and it describes the derivation of quadratic force constants from HF/6-31G* data and the derivation of reference bond lengths and angles from fits to MP2/6-31G*-optimized geometries. Comparisons offered show that MMFF94 accurately reproduces the computational data used in its parameterization and demonstrate that its derivation from such data simultaneously confers the ability to reproduce experiment. In particular, MMFF94 reproduces experimentally determined bond lengths and angles for 30 organic molecules with root mean square (rms) deviations of 0.014 Å and 1.2°, respectively. MM3 reproduces bond angles to the same accuracy, but reproduces experimental bond lengths more accurately, in part because it was fit directly to thermally averaged experimental bond lengths; MMFF94, in contrast, was fit to (usually shorter) energy-minimum values, as is proper for an anharmonic force field intended for use in molecular-dynamics simulations. The comparisons also show that UFF and a recent version of CHARMm (QUANTA 3.3 parameterization) are less accurate for molecular geometries than either MMFF94 or MM3. For vibrational frequencies, MMFF94 and MM3 give comparable overall rms deviations versus experiment of 61 cm-1 and 57 cm-1, respectively, for 15 small, mostly organic molecules. In a number of instances, MM3's derivation employed observed frequencies that differ substantially - by nearly 400 cm-1 in one case - from other published frequencies which had themselves been confirmed theoretically by good-quality ab initio calculations. Overall, the comparisons to experimental geometries and vibrational frequencies demonstrate that MMFF94 achieves MM3-like accuracy for organic systems for which MM3 has been parameterized. Because MMFF94 is derived mainly from computational data, however, it has been possible to parameterize MMFF94 with equal rigor for a wide variety of additional systems for which little or no useful experimental data exist. Equally good performance can be expected for such systems. © John Wiley & Sons, Inc.
    Additional Material: 6 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...