ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 45 (1993), S. 235-250 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In 1940, Kramers derived an expression for the rate constant of chemical reactions in viscous media. In this theory, chemical reactions are modeled as Brownian processes in the presence of potential barriers. The derivation of the rate constant is based on the solution of the Smoluchowski equation, a Fokker-Planck-type equation in position space. Kramers' theory has been confirmed for reactions in systems ranging from nuclear processes to biochemical problems. The reaction rate can be obtained from the diffusion currents appearing in the Smoluchowski equation. A Smoluchowski-type equation in position space, similar to the one applied by Kramers, has been used to find a nonlinear Schrödinger equation (NLSE) for dissipative, frictionally damped systems, taking into account wave-particle duality. For several potentials, the NLSE can be solved exactly, and analytic expressions for the currents, appearing in the Smoluchowski equation and necessary to determine the rate constants, can be obtained. These currents are not only stationary, but can also be time-dependent. It will be shown that, essentially, the determination of the time-dependence of the currents can be reduced to the solution of Newton-type equations of motion. © 1993 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...