ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 40 (1998), S. 48-56 
    ISSN: 0021-9304
    Keywords: bioactive glass ; hydroxyapatite ; cell adhesion ; fibronectin ; protein conformation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Bioactive glasses and ceramics enhance bone formation and bond directly to bone, and have emerged as promising substrates for bone tissue engineering applications. Bone bioactivity involves physicochemical surface reactions and cellular events, including cell attachment to adsorbed extracellular matrix proteins. The effects of fibronectin (Fn) adsorption and glass surface reaction stage on the attachment of osteoblast-like cells (ROS 17/2.8) to bioactive glass were analyzed. Bioactive glass disks were pretreated in a simulated physiologic solution to produce three reaction layers: unreacted glass (BG0), amorphous calcium phosphate (BG1d), and carbonated hydroxyapatite (BG7d). Synthetic hydroxyapatite (sHA) and nonreactive borosilicate glass (CG) were used as controls. A spinning disk device which applied a linear range of forces to attached cells while maintaining uniform chemical conditions at the interface was used to quantify cell adhesion. The number of adherent cells decreased in a sigmoidal fashion with applied force, and the resulting detachment profile provided measurements of adhesion strength. For the same amount of adsorbed Fn, cell adhesion was higher on surface-reacted bioactive glasses (BG1d and BG7d) than on BG0, CG, and sHA. For all substrates, cell attachment was primarily mediated by the RGD binding site of Fn, as demonstrated by blocking experiments with antibodies and RGD peptides. Cell adhesion strength increased linearly with adsorbed Fn surface density. Analysis of this fundamental relationship revealed that improved adhesion to reacted bioactive glasses resulted from enhanced cell receptor-Fn interactions, suggesting substrate-dependent conformational changes in the adsorbed Fn. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 48-56, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...