ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 26 (1992), S. 1019-1038 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The nature of in vivo leukocyte adhesion and foreign-body giant cell (FBGC) formation on polyurethanes was studied through theoretical and statistical analyses in terms of cell size distribution, density changes, and kinetics of FBGC formation. The results showed that the size distribution of FBGCs followed a “most probable” distribution. During FBGC formation, the densities of FBGCs changed with time. At an early stage, the number of FBGCs increased with time to a maximum at the expense of macrophages. As more FGBCs were formed and less macrophages were present, the fu- sion of FBGCs among themselves became significant. This, in turn, caused a gradual decrease of FBGC density with time. The rate of FBGC formation was characterized by a rate constant that represented certain characteristics of cell fusion and FBGC formation and the density of initial FBGC-forming macrophages that were a small fraction of leukocytes adhering to the surface. The direct correlations of surface cracking and pitting and adherent FBGCs demonstrated the influence of phagocytic actions of FBGCs on the biostability of implanted polyurethanes. While the cracking was thought to be caused by oxidative degradation facilitated by oxygen ion/radical release of FBGCs, the pitting appeared to result from the Methacrol 2138F aggregates diffusing out of the polymer in an acidic microenvironment under FBGCs, which in turn could be enhanced by the surface degradation and cell phagocytosis. The added Santowhite powder in polyurethane had a significant influence on FBGC formation: It reduced FBGC den- sity and rate of FBGC formation by reducing leukocyte adhesion and the number of macrophages participating in FBGC formation.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...