ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 56 (1997), S. 201-209 
    ISSN: 0006-3592
    Keywords: adaptation ; biofilm ; biocide ; disinfection ; model ; monochloramine ; Pseudomonas ; stress response ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model of biocide action against microbial biofilm was tested experimentally by measuring the response of Pseudomonas aeruginosa biofilm to various doses of monochloramine. Pure culture biofilm was developed in continuous flow annular reactors for 7 days, then treated with a 2-, 4-, or 8-h dose of 2 or 4 mg L-1 monochloramine. Some experiments investigated repeated treatment. Disinfection and regrowth of the biofilm were observed by sampling the biofilm for viable and total cell areal densities for up to 100 h following the biocide treatment. A phenomenological mathematical model was fitted to experimental data sets and captured overall trends, but it could not simulate certain experimentally observed features. The model did simulate rapid disinfection followed by steady regrowth. It correctly predicted a much greater decrease in viable than in total cell densities and also correctly captured the shapes of these trajectories. Discrepancies between the model and data included the following: the model predicted faster regrowth than was experimentally observed, the model predicted that a second dose would be more effective than the first dose but the opposite was observed in the experiments, and parameters estimated by fitting one dose concentration could not be used to predict the results of a different dose concentration or a second dose. Discrepancies between model and the experiment were hypothesized to be due to an adaptive stress response by the bacteria, a process not included in the model. A practical implication of this work is that it is more effective to deliver monochloramine in a short concentrated dose as opposed to a longer dose of lower concentration. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 201-209, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...