ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 727-736 
    ISSN: 0006-3592
    Keywords: acetate ; anaerobic ; biodegradation ; formaldehyde ; methanogenic ; toxicity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Formaldehyde is present in several industrial wastewaters including petrochemical wastes. In this study, the toxicity and degradability of formaldehyde in anaerobic systems were investigated. Formaldehyde showed severe toxicity to an acetate enrichment methanogenic culture. As low as 10 mg/L (0.33 mM) of formaldehyde in the reactor completely inhibited acetate utilization. Formaldehyde, however, was degraded while acetate utilization was inhibited. Degradation of formaldehyde (Initial concentration ≤30 mg/L) followed Monod model with a rate constant, k, of 0.35-0.46 d-1. At higher initial concentrations (≥60 mg/L), formaldehyde degradation was inhibited and partial degradation was possible. The initial formaldehyde to biomass ratio, S0/X0, was useful to predict the degradation potential of high formaldehyde concentrations in batch systems. When S0/X0 ≤ 0.1, formaldehyde was completely degraded with initial concentration of up to 95 mg/L; when S0/X0 ≥ 0.29, formaldehyde at higher than 60 mg/L was only partially degraded. The inhibition of formaldehyde degradation in batch systems could be avoided by repeated additions of low concentrations of formaldehyde (up to 30 mg/L). Chemostats (14-day retention time) showed degradation of 74 mg/L-d (1110 mg/L) of influent formaldehyde with a removal capacity of 164 mg/g VSS-day. A spike of 30 mg/L (final concentration in the chemostat) formaldehyde to the chemostat caused only a small increase in effluent acetate concentration for 3 days. But a spike of 60 mg/L (final concentration in the chemostat) formaldehyde to the chemostat resulted in a dramatic increase in acetate concentration in the effluent. The results also showed that the acetate enrichment culture was not acclimated to formaldehyde even after 226 days. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 727-736, 1997.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...