ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 26 (1984), S. 1409-1417 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The kinetics of cellular reproduction and the rate and extent of synthesis of extracellular polymeric substances (EPS) were investigated for P. aeruginosa growing in glucose-limited chemostats. μmax and Ks estimates of 0.4 h-1 and 2 mg glucose C/L, respectively, at 25°C were obtained for this bacterium. The extent of EPS formation was inversely related to the growth rate of P. aeruginosa. The rate of EPS formation had both growth- and non-growth-associated components. The growth-associated polymer formation rate coefficient (k) was 0.3 mg polymer C/mg cellular C and the non-growth-associated polymer formation rate coefficient (k′) was 0.04 mg polymer C/mg cellular C/h. The values for k and k′ must be regarded as provisional since the product formation data were quite variable at low dilution rates. Estimates of the cellular (Yx/s) and polymer (Yp/s) yield coefficients were 0.3 mg cellular C/mg glucose C and 0.6 mg polymer C/mg glucose C, respectively. Most of the non-growth-associated consumption of glucose detected was due to exopolymer formation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...