ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 13 (1974), S. 797-824 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Strand separation of T2 DNA has been investigated in a helix-destabilizing solvent. Temperature-shift experiments in which the conformation of the DNA is monitored by its viscosity, sedimentation behavior, and kinetics of helix formation show that a well-defined strand-separation transition follows the helix-coil transition usually observed by changes in absorbance. For T2 DNA, this strand-separation transition is 70% as broad as the helix-coil transition, and is characterized by extremely slow kinetics of conformational change in the population. Strand separation requires the expansion of the two-stranded coil observed at the end of the helix-coil transition. This expansion is apparently coupled with the disurption of the last remaining base pairs in the molecule. The expansion process increases the viscosity, and can be readily followed as a function of time and/or temperature. Subsequent separation of the expanded form into complementary strands results in a viscosity decrease, the net result of a reduction in hydrodynamic volume and the halving of the molecular weight. Only under conditions where the driving force for strand separation is large are these events at all synchronous in the population. When the kinetics of conformational change are complete in the strand-separation transition, a mixture of expanded forms and separate strands is observed; the breadth of the transition reflects differences in stability with respect to strand separation among the molecules in the population. The transition exhibits hysteresis and is not a reversible equilibrium between double-stranded and single-stranded forms. It appears that renucleation is kinetically forbidden within the strand-separation region.
    Additional Material: 18 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...