ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-08-29
    Description: Growth rates and other biomass traits of phytoplankton are strongly affected by temperature. We hypothesized that resulting phenotypes originate from deviating temperature sensitivities of underlying physiological processes. We used membrane-inlet mass spectrometry to assess photosynthetic and respiratory O2 and CO2 fluxes in response to abrupt temperature changes as well as after acclimation periods in the diatom Phaeodactylum tricornutum. Abrupt temperature changes caused immediate over- or undershoots in most physiological processes, that is, photosynthetic oxygen release ((Figure presented.)), photosynthetic carbon uptake ((Figure presented.)), and respiratory oxygen release ((Figure presented.)). Over acclimation timescales, cells were, however, able to re-adjust their physiology and revert to phenotypic ‘sweet spots’. Respiratory CO2 release ((Figure presented.)) was generally inhibited under high temperature and stimulated under low-temperature settings, on abrupt as well as acclimation timescales. Such behavior may help mitochondria to stabilize plastidial ATP : NADPH ratios and thus maximize photosynthetic carbon assimilation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...