ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-07-26
    Description: Ferric iron can be incorporated into the crystal structure of bridgmanite by either oxygen vacancy substitution (MgFeO2.5 component) or charge-coupled substitution (FeFeO3 component) mechanisms. We investigated the concentrations of MgFeO2.5 and FeFeO3 in bridgmanite in the MgO-SiO2-Fe2O3 system at 27 GPa and 1700–2300 K using a multianvil apparatus. The FeFeO3 content increases from 1.6 to 7.6 mol.% and from 5.7 to 17.9 mol.% with and without coexistence of (Mg,Fe)O, respectively, with increasing temperature from 1700 to 2300 K. In contrast, the MgFeO2.5 content does not show clear temperature dependence, that is, ~2–3 and 〈 2 mol.% with and without the coexistence of (Mg,Fe)O, respectively. Therefore, the presence of (Mg,Fe)O enhances the oxygen vacancy substitution for Fe3+ in bridgmanite. It is predicted that Fe3+ is predominantly substituted following the oxygen vacancy mechanism in (Mg,Fe)O-saturated Al-free bridgmanite when Fe3+ is below ~0.025 pfu, whereas the charge-coupled mechanism occurs when Fe3+ 〉 0.025 pfu.
    Keywords: 549 ; bridgmanite ; ferric iron ; oxygen vacancy substitution ; charge-coupled substitution ; lower mantle
    Language: English
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...