ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-01
    Description: The central Amazon forest is projected to experience larger interannual precipitation variability, with uncertain impacts on terrestrial hydrologic fluxes. How surface runoff, groundwater, and evapotranspiration (ET) change as a function of annual precipitation (AP) has large climate and biogeochemical implications. A process-based hydrological model is used to examine the sensitivity of hydrologic budgets and stream discharge Qs generation to AP in an upland Amazon catchment. The authors find that AP strongly controls infiltration, base flow, and surface runoff, but not ET. Hence, AP alone can predict interannual changes in these fluxes except ET. Experiments with perturbed rainfall show the strong control derives from the predominant groundwater component that varies linearly with AP but is insensitive to seasonal rainfall fluctuations. Most rainfall from large storms infiltrates and becomes base flow rather than runoff or ET. Annual baseflow index (BFI; the fraction of stream discharge from base flow) is nearly constant (~0.8) when AP is below ~2500 mm yr−1 and decreases with AP above this value, which represents an inflection point for increased storage-dependent saturation excess. These results indicate that the system is energy limited and groundwater dominated in dry seasons, which implies some resilience of ET to moderate droughts. The results suggest AP is a good predictor for interannual changes in infiltration. Both the seasonal near-surface soil moisture and surface runoff are correlated more strongly to the subsurface fluxes than to precipitation over monthly and annual time scales. Finally, the results confirm the importance of central Amazon groundwater flow and its buffering effect on storms and droughts, implying needed model development in regional to global models.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...