ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-27
    Description: Lumped parameter modeling (LPM) combined with optimization techniques is an efficient approach for parametric configuration design of energy absorption to improve crashworthiness performance during train collision. This work proposed a simplified model by introducing a bar element to consider the influence of the carbody in a collision process. The optimization method is applied to calibrate the equivalent parameters of the bar element. Bar elements with calibrated parameters are adopted in establishing a one-dimensional (1D) model for the train crash. Subsequently, a novel crash energy management (CEM) mode with functionally graded energy (FGE) configuration is introduced to the train crash model for improving crashworthiness performance. The influence of parameters in graded function on interfacial force and peak acceleration is investigated and optimal design parameters are obtained by Nondominated Sorting Genetic Algorithm (NSGA-II). It is concluded that considering the behavior of the carbody can improve the accuracy of LPM in predicting the longitudinal response, and the gradient CEM is a potential energy configuration mode to improve the crashworthiness of the train in a collision.
    Print ISSN: 1070-9622
    Electronic ISSN: 1875-9203
    Topics: Mathematics
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...