ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhang, Z G; Du, Y S; Wu, C H; Fang, N Q; Yang, S X; Liu, J; Song, C B (2012): Growth of a polymetallic nodule from the northwestern continental margin of the South China Sea and its response to changes in the paleoceanographical environment of the Late Cenozoic. Science China Earth Sciences, 56(3), 453-463, https://doi.org/10.1007/s11430-012-4535-8
    Publication Date: 2023-08-28
    Description: In the northern South China Sea, the accumulation of enormous quantities of terrigenous sediment during Cenozoic rendered well-developed polymetallic nodules very rare. In this study, we analyzed a polymetallic nodule from the northwestern continental margin of the South China Sea using microscopic mineralogical observation, electron probes, X-ray diffraction (XRD), ICP-MS, and Be isotope dating. We found the nodule's shell layers rich in different types of microstructures, including columnar, laminar, stack-like, petal-like, and porphyritic structures. The major mineral components of the nodule are MnO2. Unlike nodules from the eastern Pacific basin, this nodule has high contents in Fe, Si, Al, and REEs but low contents in Mn, Cu, Co, and Ni. The Mn/Fe ratio is also low and the average REEs content is 1370.4 ppm. There is a strong positive anomaly of Ce; and the Be (beryllium) isotope dating shows the initial time of growth of the nodule to be about 3.29 Ma. The inner compact layer formed from 3.29 Ma to about 1.83 Ma. The laminar and stack-like structures and the low contents of the terrigenous elements such as Fe, Si, REE, and Al indicate the paleoceanographical environment with weak undersea currents and favorable oxidizing conditions. From 1.83 Ma to 0.73 Ma, the growth rate of the nodule increased by about 3%; the microstructures formed during this period are stack-like and columnar. The contents of Si and Al are increased by nearly 10%, indicating an increase of terrigenous sediment input in the northern South China Sea. The content of Ce is decreased by about 16%, indicating a significant weakening of the oxidizing conditions at the seabed. From 0.73 Ma to 0.69 Ma, the growth rate of the nodule rapidly rose up to 8.27 times that of the nodule's average growth rate, and the contents of Fe, Al, and REEs in the layer also increased, forming a loose layer characterized by oolitic, granular, porphyritic, and petal-like structures, indicating the paleoceanographical environment with a high sedimemtation rate and abundant supply of terrigenous sediment in the northern South China Sea. From 0.69 Ma to 0.22 Ma, the growth rate of the nodule suddenly slowed and the outer compact layer formed. Contents of Fe, Si, REE, Al, Mn, Cu, Co, and Ni in this layer were significantly lower than in other layers. The main structures of the layer are laminar and fissure filling structures. These reflect the paleoceanographical environment with stable undersea currents, poor oxidizing conditions, and other conditions not conducive to nodule growth. The growth process of nodule S04-1DG-1 was found to respond sensitively to the changes of the paleoceanographical environment of the northern South China Sea during the late Cenozoic.
    Keywords: China Sea; Dredge; DRG; NOAA and MMS Marine Minerals Geochemical Database; NOAA-MMS; O4-S04-12DG; O4-S04-1DG; O4-S04-7DG; Ocean 4; S04
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...