ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: Both Saturn's rings and planetesimal disks are made up of particles in Keplerian orbits. Inelastic collisions between these particles regulate their dynamical evolution and possible aggregation. We present an experiment to simulate glancing collisions in Saturn's rings and in planetesimal disks and thus measure contributions to the energy loss for both normal and tangential velocity components. In this experiment, a spherical iceball mounted on a long-period, two dimensional pendulum is made to impact a flat ice surface in a low-temperature environment. This paper describes the experimental apparatus in detail and presents results for smooth unfrosted surfaces. The energy loss for tangential motion is suprisingly low, indicating that very little friction is present at low impact speeds for relatively smooth ice surfaces and temperatures near 100 K. We have also investigated room-temperature collisions of a rubber ball on a rough surface to understand the energy loss in situations where the tangential friction force is not small. In this analogous case, the energy loss is maximum for impact angles in the range 45 deg-60 deg.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Icarus (ISSN 0019-1035); 113; 1; p. 188-199
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...