ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: The multifluid diffusive model of G. P. Zank et al. (1994), which describes the interaction of the solar wind with a cometary plasma in the outer coma, has been used to model the structure of the Halley bow shock. The theoretical results are compared to in situ observations made by Giotto. We compare the solar wind and cometary ion number densities and pressures upstream and through the quasi-perpendicular and quasi-parallel shocks (observed on the inbound and outbound legs of the encounter, respectively). In general, good agreement is found between theory and observations in terms of shock structure, strength, and location, especially for the quasi-parallel shock. The comparison between tha quasi-perpendicular shock observations and theory is complicated by the apparently nonstationary behavior of the shock, a feature which has been remarked upon by other investigators. The cometary bow shock appears to be an excellent example of an energetic-particle-mediated shock where the energetic particles comprise less than 10% of the total number density.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7899-7906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...