ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: This paper investigates the properties of a one-dimensional fluid model of plasma convection in the equatorial F region ionosphere. The model equations are similar in form to Burgers equation except for additional higher-order spatial derivatives. Like Burgers equation, solution to the model have the form of propagating, shocklike structures. Numerical simulations of the model closely resemble the steepened structures observed by sounding rocket plasma density probes within equatorial spread F. Simulated denstiy power spectra, like the spectra computed from in situ data, seem to possess power law forms with a break at wavelengths of about 100 m. The precise wavenumber of the spectral break is determined by the ambipolar diffusion coefficient. The model predicts that electric field fluctuations perpendicular to the direction of plasma steepening should be proportional to the plasma density fluctuations. Electric field fluctuations parallel to the steepening will be due primarily to the ambipolar field and have a Boltzmann relationship with density (square of the absolute value of delta E) approximately equal to (K(exp 2))(square of the absolute value of (delta n/n)). At wavelengths less than about 300 m, the ambipolar field should be the dominant component of the total field intensity.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 8841-8850
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...