ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-05-06
    Description: The marine cyanobacterium Trichodesmium has the remarkable ability to interact with and utilize air‐borne dust as a nutrient source. However, dust may adversely affect Trichodesmium through buoyancy loss and exposure to toxic metals. Our study explored the effect of desert dust on buoyancy and mortality of natural Red Sea puff‐shaped Trichodesmium thiebautii . Sinking velocities and ability of individual colonies to stay afloat with increasing dust loads were studied in sedimentation chambers. Low dust loads of up to ∼400 ng per colony did not impact initial sinking velocity and colonies remained afloat in the chamber. Above this threshold, sinking velocity increased linearly with the colony dust load at a slope matching prediction based on Stoke's law. The potential toxicity of dust was assessed with regards to metal dissolution kinetics, differentiating between rapidly released metals, which may impact surface blooms, and gradually released metals that may impact dust‐centering colonies. Incubations with increasing dust concentrations revealed colony death, but the observed lethal dose far exceeded dust concentrations measured in coastal and open ocean systems. Removal of toxic particles as a mechanism to reduce toxicity was explored using SEM‐EDX imaging of colonies incubated with Cu‐minerals, yet observations did not support this pathway. Combining our current and former experiments, we suggest that in natural settings the nutritional benefits gained by Trichodesmium via dust collection outweigh the risks of buoyancy loss and toxicity. Our data and concepts feed into the growing recognition of the significance of dust for Trichodesmium 's ecology and subsequently to ocean productivity. Plain Language Summary Trichodesmium spp. are abundant cyanobacteria, forming extensive blooms in low latitude warm oceans, and contribute significantly to carbon (C) and nitrogen (N) fixation, recycling and export. Desert dust deposited on the ocean surface was shown to supply Trichodesmium with the scarce micronutrient iron. Spherical, millimeter‐sized colonies of Trichodesmium from different ocean basins were reported to actively accumulate dust in their cores. While dust accumulation likely helps Trichodesmium obtain nutrients, it may come at a cost. Metals released from dust may induce toxicity and the dust weight could send Trichodesmium to the ocean depth. Our experimental study with natural Red Sea colonies examined some trade‐offs of dust accumulation. Links between dust load and colony buoyancy were examined in sedimentation experiments. Toxicity thresholds for surface blooms and dust‐accumulating colonies were determined from mortality assays and dust dissolution measurements. We found that metal‐induced toxicity to Trichodesmium is unlikely at typical oceanic dust fluxes, and that dust‐containing colonies can remain buoyant. At high loads, dust weight determined the colony's sinking velocity. Our findings and concepts can be extended to additional aerosols and Trichodesmium ‐rich habitats, and may assist in assessing Trichodesmium 's distribution, ecophysiology, and contribution to C or N transport to the deep ocean. Key Points Dust collected by Trichodesmium colonies from seawater as a nutrient source may result in metal toxification and buoyancy loss At moderate dust loads, colonies kept their buoyancy, but above 400 ng, sinking velocities increased linearly with dust loads Desert dust induced Trichodesmium mortality through toxic metal release, yet the lethal dose far exceeded oceanic dust concentrations
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...