ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Chromium (Cr) isotopes have shown great potential as a paleo-redox proxy to trace the redox conditions of ancient oceans and atmosphere. However, its cycling in modern environments is poorly constrained. In my thesis, I attempt to fill in the gap of our understanding of chromium cycling in the modern ocean, with a focus on the redox processes in global oxygen deficient zones (ODZs). Firstly, we developed a method to analyze Cr isotopes of different Cr redox species. Tests on processing conditions demonstrated its robustness in obtaining accurate Cr isotope data. It is applicable to both frozen and fresh samples. This method allows us to investigate the redox cycling of Cr that is hard to unravel by existing total Cr methods. Secondly, in the Eastern Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP) and Arabian Sea ODZs, their total dissolved Cr profiles show preferential reduction of isotopically light Cr(VI) to Cr(III), which is scavenged and exported to deeper oceans. Applying our new method to ETNP and ETSP ODZ seawater samples, we observed Cr(VI) reduction in both ODZs with a similar fractionation factor. This indicates similar mechanisms may be controlling Cr(VI) reduction in the two ODZs. Cr(III) maximum coincides with Fe(II) and secondary nitrite maximums in the upper core of both ODZs. Shipboard incubations with spiked Fe(II) showed fast Cr(VI) reduction occurring in the ETNP ODZ. But neither Fe(II) nor microbes were reducing Cr(VI) directly. Thirdly, we calculated the isotope effects of Cr scavenging in the ETNP and ETSP ODZs. Thetwo ODZs show a similar isotope partitioning during Cr scavenging. And spatial variability is observed in the ETNP ODZ. Our calculated scavenged Cr isotope ratio is lighter than that of the total dissolved Cr from the same depth. It is also comparable to that of reducing or anoxic sediments, which implies that Cr isotopes can be used as an archive for local redox conditions.
    Description: This research was supported by an anonymous MIT Fellowship, Praceis Presidential Fellowship, Frederick A. Middleton Fellowship, the US National Science Foundation (NSF Award No. OCE-1459287, OCE-1736996, OCE-1924050 and DEB-1542240) and the Center for Microbial Oceanography: Research and Education (C-MORE, NSF-OIA Award No. EF-0424599).
    Keywords: Chromium isotopes ; Oxygen deficient zones ; Redox cycling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...