ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-17
    Description: Geochemical interactions between shale and hydraulic fracturing fluid may affect produced-water chemistry and rock properties. It is important to investigate the rock–water reactions to understand the impacts. Eight autoclave experiments reacting Marcellus and Eagle Ford Shale samples with synthetic brines and a friction reducer were conducted for more than 21 days. To better determine mineral dissolution and precipitation at the rock–water interface, the shale samples were ion milled to create extremely smooth surfaces that were characterized before and after the autoclave experiments using scanning electron microscopy (SEM). This method provides an unprecedented level of detail and the ability to directly compare the same mineral particles before and after the reaction experiments. Dissolution area was quantified by tracing and measuring the geometry of newly formed pores. Changes in porosity and permeability were also measured by mercury intrusion capillary pressure (MICP) tests. Aqueous chemistry and SEM observations show that dissolution of calcite, dolomite, and feldspar and pyrite oxidation are the primary mineral reactions that control the concentrations of Ca, Mg, Sr, Mn, K, Si, and SO 4 in aqueous solutions. Porosity measured by MICP also increased up to 95%, which would exert significant influence on fluid flow in the matrix along the fractures. Mineral dissolution was enhanced and precipitation was reduced in solutions with higher salinity. The addition of polyacrylamide (a friction reducer) to the reaction solutions had small and mixed effects on mineral reactions, probably by plugging small pores and restricting mineral precipitation. The results suggest that rock–water interactions during hydraulic fracturing likely improve porosity and permeability in the matrix along the fractures by mineral dissolution. The extent of the geochemical reactions is controlled by the salinity of the fluids, with higher salinity enhancing mineral dissolution.
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...