ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-30
    Description: A precise gravimetric geoid determination requires height information and terrestrial gravity data with high accuracy and resolution. The height data is utilized for predicting mean free-air gravity anomalies as well as computing the topographic, atmospheric and downward continuation effects which are fundamental components of any geoid model. Nowadays the Digital Elevation Model (DEM) obtained from the Shuttle Radar Topography Mission (SRTM) has been widely used when an accurate regional DEM does not exist. In addition the DEM generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was newly released by researchers from Japan and United States. In this study the effect of ASTER DEM on the estimating mean free-air gravity anomalies in geoid determination were investigated in the Auvergne test area where one of its regions exhibits one of the most rugged topography over the world. The numerical results show that ASTER DEM gives worse statistics than SRTM DEM with respect to the accuracy of the height. Using ASTER DEM introduces discrepancies (compared to SRTM DEM) in the range of \(-\) 4 to 10 mGal in the interpolation of free-air gravity anomalies. It is also proven that the geoid differences due to the use of ASTER DEM are a few centimeters, which remain below the accuracy level of the external GPS-levelling data.
    Print ISSN: 1217-8977
    Electronic ISSN: 1587-1037
    Topics: Architecture, Civil Engineering, Surveying , Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...