ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 30 (1995), S. 295-325 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A Local Climate Model (LCM) is described that can provide a high-resolution (10 km) simulation of climate resulting from a doubling of atmospheric CO2 concentrations. A canonicalregression function is used to compute the monthly temperature (mean of daily-maximum-temperature) and precipitation for any point, given a set of predictor variables. Predictor variables represent the influence of terrain, sea-surface temperature (SST), windfields, CO2 concentration, and solar radiation on climate. The canonical-regression function is calibrated and validated using empirical windfield, SST, and climate data from stations in the western U.S. To illustrate an application of the LCM, the climate of northern and central California is simulated for a doubled CO2 (600 ppmv) and a control scenario (300 ppmv CO2). Windfields and SSTs used to compute predictor variables are taken from general circulation model simulations for these two scenarios. LCM solutions indicate that doubling CO2 will result in a 3 C° increase in January temperature, a 2 C° increase in July temperature, a 16 mm (37%) increase in January precipitation, and a 3 mm (46%) increase in July precipitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...