ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
  • Computational biology and bioinformatics
  • 1
    Publikationsdatum: 2020-12-03
    Beschreibung: A study of the He isotopic ratios of fluid inclusions in olivine and pyroxene from the Roman Comagmatic Province (RCP),Italy, is presented together with 87Sr/86Sr isotope compositions of the whole rock or pyroxene phenocrysts. A clear covariation in He and Sr isotopes is apparent, with a strong northward increase in radiogenic He and Sr being evident. He and Sr isotopes ratios range from 3He/4He = 5.2 Ra and 87Sr/86Sr = 0.7056 in south Campania, to 3He/4He = 0.44 Ra and 87Sr/86Sr = 0.715905 in the northernmost Latium. Helium isotope ratios are significantly lower than MORB values and are among the lowest yet measured in subduction zone volcanism. The 3He/4He of olivine and pyroxene phenocryst-hosted volatiles appear to be little influenced by posteruptive processes and magma–crust interaction. The 3He/4He–87Sr/86Sr covariation is consistent with binary mixing between an asthenospheric mantle similar to HIMU ocean island basalts, and an enriched (radiogenic) mantle end member generated from subduction of the Ionian/Adriatic plate. The contribution of radiogenic He from metasomatic fluids and postmetasomatism radiogenic ingrowth in the wedge is strongly dependent on the initial He concentration of the mantle. Only when asthenosphere He concentrations are substantially lower than the MORB source mantle, and metasomatism occurred at the beginning of the subduction (f30 Ma), can ingrowth in the mantle wedge account for the 3He/4He of the most radiogenic basalts.
    Beschreibung: - European Social Fund - Scottish Universities - Carnegie Trust for the Universities of Scotland.
    Beschreibung: Published
    Beschreibung: 295–308
    Beschreibung: partially_open
    Schlagwort(e): Roman Comagmatic Province ; fluid inclusions ; helium ; strontium ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 516427 bytes
    Format: 539 bytes
    Format: application/pdf
    Format: text/html
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2020-12-03
    Beschreibung: The Messina Straits is the locus of one of the strongest seismic event that ever hit Italy during historical times, the 1908 Mw 7.1 earthquake, and the same region also suffered major damage from other strong earthquakes in the last few centuries. However, despite the large amount of data and studies carried out, our knowledge of the present-day deformation of this area is still debated. While a general consensus has been reached about the kinematics of the 1908 causative fault, less is known about the rate and shape of interseismic loading across the Straits, and debate continues also about the general kinematics and geodynamic framework of this region which are strongly influenced by subduction and retreat of Ionian lithosphere. Thanks to the increasing number of GPS Networks in the study region it is now possible to study both the regional kinematics and strain loading across active faults. In this work we analyze all the observations collected over the Messina non-permanent GPS Network for the 1994-2008 time span, and data from about 600 CGPS stations in the Euro-Mediterranean region, using the GAMIT software. The output of our analysis is a new and denser velocity field, which is used to study the plate kinematics and the rate of interseismic strain building across the Straits. GPS velocities show a sudden change in their orientation across the Straits moving to NNW-ward, in Estern Sicily, to NNE-ward in Western Calabria, depicting this area as a primary boundary between two different tectonic domains. The maximum strain-rates observed across the Straits are about 120 nanostrain/yr, with extension oriented about normal to the coasts of Sicily according to the presence of a normal fault. The measured velocity gradient can be used to model the creeping dislocation at depth, however, over the Messina Straits the interseismic elastic strains accumulating across other nearby active faults can significantly affect the observed velocity gradient.For this reason we investigate, using a regional elastic block-modeling approach, these effects. We use the block model to test for different microplates configurations and to account for nearby active faults while inverting for optimal fault geometry and intersismic slip-rates across the Straits.
    Beschreibung: Published
    Beschreibung: vienna, austria.
    Beschreibung: 1.9. Rete GPS nazionale
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: open
    Schlagwort(e): block model ; gps ; messina straits ; calabria ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-01-27
    Beschreibung: We present the first nitrogen isotope data from hydrothermal fluids of Graciosa, Terceira and S. Miguel Islands (Azores, Portugal), together with helium isotope composition. 15N values are slightly enriched in light isotopes (from -0.7‰ to -2.2‰) with respect to air, while 3He/4He ratios range from 5 to 6 Ra in Sao Miguel island and from 8 to 9.1 Ra in Graciosa and Terceira islands. The latter values are similar to those found in olivine phenocrysts of basalts (Moreira et al., 1999; Madureira et al., 2005). Such isotope signatures seem to point to the presence of two different deeply-derived end-members: a 3He-rich primitive end-member evident in Terceira and Graciosa islands samples and a 3He-poor end-member characterizing samples from S. Miguel island. According to Madureira et al. (2005), the He primitive component which is more evident in the central parts of the Azores archipelago has to be related to a lower mantle contribution into the prevailing MORB component. On the contrary, the origin of the radiogenic crustal component is still open and debated between the contribution of recycled terrigenous sediments (Turner et al., 1997) and oceanic mantle lithosphere (Schaefer et al., 2002). Since 15N values from fluids vents and inclusions in basalt glasses were discovered to be good geochemical tracers of magma genetic processes, we determined molecular and isotope nitrogen composition (15NN2) in some hydrothermal fluids with the aim to provide additional information on the mantle composition beneath the Azores archipelago. Based on the N2/36Ar ratio we computed for each samples the 15N values of the non-atmospheric nitrogen (15Ndeep). Volatiles emitted from Graciosa and Terceira islands seem to have a common deep nitrogen isotope signature of about -1.5‰ likely resulting from a mixing between lower mantle (15N from 1‰ to 4‰) and upper mantle (15NMORB from -3‰ to -7‰). On the other hand, the 15Ndeep feeding the fumaroles at S. Miguel is close to -5.5‰. Such a 15N-depleted values seem to indicate a probable nitrogen origin from a deep source derived from the recycling of ancient oceanic plate into the upper mantle (MORB). rather than from the recycling of terrigenous sediments transported on top of the descending plate that should have lead to 15N-enrichments.
    Beschreibung: Published
    Beschreibung: La Malbaie, Quebec, Canada
    Beschreibung: 2.4. TTC - Laboratori di geochimica dei fluidi
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Beschreibung: open
    Schlagwort(e): Nitrogen isotopes ; Hydrothermal fluids ; Azores Islands ; Volcanic gases ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Oral presentation
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-10-26
    Beschreibung: We present here a new high resolution regional P-wave velocity model for the lithosphere beneath the Italian region obtained by including information on the Moho topography, and integrating results from local earthquake tomography with 30 years of CSS data, applying the method of Waldhauser (1996). For the 3D moho map, we extended the crustal model, already available for the Alps by Lippitsch et al., 2003, to the Italian peninsula, Corsica, Sardinia, and Sicily. The tomographic model is obtained by inverting 166,000 Pg and Pn arrival times large part of which have been automatically picked and consistently weighted with an advanced automatic picking system (Aldersons, 2004). The resolution of the obtained velocity model is consistently higher and the grid spacing consistently smaller than in previous tomographic works targeting the same region. We are able to image the complex geometry of this part of the subduction-collision system between the Eurasian and African plates adding important details to the overview derived by the teleseismic tomography. Our results clearly show the plate boundary at Moho level from the Alps to the Southern Apennines and the Calabrian Arc in a volume unresolved in previous studies. The use of global 1D velocity models based on the flat Earth assumption is a pre-requisite to refine and interpret images and seismic responses of the earth obtained with geophysical studies (P and S tomography, surface wave tomography etc). Our model is suitable as a good starting point for a 3D velocity reference model of the crust and upper mantle beneath the Mediterranean area to be extended to the Adriatic Sea and to the Ionian Sea, with benefit for earthquakes location,teleseismic tomography, focal mechanisms and CMT
    Beschreibung: Published
    Beschreibung: Vienna
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: open
    Schlagwort(e): local earthquake tomography ; velocity model ; Italian Peninsula ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: Poster session
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-11-26
    Beschreibung: : In the western Mediterranean area, after a long period (late Paleogene-Neogene) of Nubian northward subduction beneath Eurasia, subduction is almost ceased as well as convergence accommodation in the subduction zone. With the progression of Nubia-Eurasia convergence, a tectonic reorganization is therefore necessary to accommodate future contraction. Previously-published tectonic, seismological, geodetic, tomographic, and seismic reflection data (integrated by some new GPS velocity data) are reviewed to understand the reorganization of the convergent boundary in the western Mediterranean. Between northern Morocco, to the west, and northern Sicily, to the east, contractional deformation has shifted from the former subduction zone to the margins of the two backarc oceanic basins (Algerian-Liguro-Provençal and Tyrrhenian basins) and it is now active in the south-Tyrrhenian (northern Sicily), northern Liguro-Provençal, Algerian, and Alboran (partly) margins. Compression and basin inversion has propagated in a scissor-like manner from the Alboran (c. 8 Ma) to the Tyrrhenian (younger than c. 2 Ma) basins following a similar propagation of the subduction cessation and slab breakoff, i.e., older to the west and younger to the east. It follows that basin inversion is rather advanced in the Algerian margin, where a new southward subduction seems to be in its very infant stage, while it has still to properly start in the Tyrrhenian margin, where contraction has resumed at the rear of the fold-thrust belt and may soon invert the Marsili oceanic basin. GPS-derived strain rates higher in the Tyrrhenian margin than in the Algerian boundary suggest that this latter manner of contraction accommodation (contraction resumption at the rear of the orogenic wedge) is more efficient than subduction inception and basin inversion along newly-generated reverse faults (Algeria), but the differential strain rates may also be explained with the heterogeneous distribution of GPS stations. Part of the contractional deformation may have shifted toward the north in the Liguro-Provençal basin possibly because of its weak rheological properties compared with the area between Tunisia and Sardinia, where no oceanic crust occurs and seismic deformation is absent or limited compared with the adjacent strands of the Nubia-Eurasia boundary. The tectonic reorganization of the Nubia-Eurasia boundary in the study area is still strongly controlled by the inherited tectonic fabric and rheological attributes, which are both discontinuous and non-cylindrical along the boundary. These features prevent, at present, the development of long and continuous thrust faults. In an extreme and approximate synthesis, the evolution of the western Mediterranean is inferred as being similar to a Wilson Cycle in the following main steps: (1) northward Nubian subduction with Mediterranean backarc extension (since ~35 Ma); (2) progressive cessation, from west to east, of Nubian main subduction (since ~15 Ma); (3) progressive compression, from west to east, in the former backarc domain and consequent basin inversion (since ~8-10 Ma); (4) possible future subduction of former backarc basins.
    Beschreibung: Published
    Beschreibung: 279-303
    Beschreibung: 1.9. Rete GPS nazionale
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): western Mediterranean ; convergent boundary ; tectonic reorganization ; subduction, ; backarc basin ; basin inversion ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-12-03
    Beschreibung: We use Global Positioning System (GPS) velocities and dislocation modeling to investigate the rate and nature of interseismic strain accumulation in the area affected by the 1908 Mw 7.1 Messina earthquake (southern Italy) within the framework of the complex central Mediterranean microplate kinematics. Our data confirm a change in the velocity trends between Sicily and Calabria, moving from NNW-ward to NE- ward with respect to Eurasia, and detail a fan-like pattern across the Messina Straits where maximum extensional strain rates are ~65 nanostrains/yr. Extension normal to the coast of northern Sicily is consistent with the presence of SW–NE trending normal faults. Half-space dislocation models of the GPS velocities are used to infer the slip-rates and geometric fault parameters of the fault zone that ruptured in the Messina − 1.3 earthquake. The inversion, and the bootstrap analysis of model uncertainties, finds optimal values of 3. 5 + 2.0 − 0.2− 0.7 and 1.6 + 0.3 mm/yr for the dip–slip and strike–slip components, respectively, along a 30 + 1.1° SE-ward dipping normal fault, locked above 7.6−2.9 km depth. By developing a regional elastic block model that + 4.6 accounts for both crustal block rotations and strain loading at block-bounding faults, and adopting two different competing models for the Ionian–Calabria convergence rates, we show that the measured velocity gradient across the Messina Straits may be significantly affected by the elastic strain contribution from other nearby faults. In particular, when considering the contribution of the possibly locked Calabrian subduction interface onto the observed velocity gradients in NE-Sicily and western Calabria, we find that this longer wavelength signal can be presently super-imposed on the observed velocity gradients in NE-Sicily and Calabria. The inferred slip-rate on the Messina Fault is significantly impacted by elastic strain from the subduction thrust. By varying the locking of the subduction thrust fault, in fact, the Messina Fault slip-rate varies from 0 to 9 mm/yr.
    Beschreibung: Published
    Beschreibung: 347-360
    Beschreibung: 1.9. Rete GPS nazionale
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Messina Straits ; Global Positioning System ; strain accumulation ; plate kinematics ; dislocation modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-06-16
    Beschreibung: Giant earthquake (moment magnitude Mw 〉=8.5) forecasts for subduction zones have been empirically related to both tectonic stresses and geometrical irregularities along the subduction interface. Both of these controls have been suggested as able to tune the ability of rupture to propagate laterally and, in turn, exert an important control on giant earthquake generation. Here we test these hypotheses, and their combined influence, by compiling a dataset of trench fill thickness (a proxy for smoothing of subducting plate relief by sediment input into the subduction channel) and upper plate strain (a proxy for the tectonic stresses applied to the subduction interface) for 44 segments of the global subduction network. We statistically compare relationships between upper plate strain, trench sediment thickness and maximal earthquake magnitude. We find that the combination of both large trench fill (≥1 km) and neutral upper plate strain explains spatial patterns of giant earthquake occurrence to a statistically significant degree. In fact, the concert of these two factors is more highly correlated with giant earthquake occurrence than either factor on its own. Less frequent giant earthquakes of lower magnitude are also possible at subduction zones with thinner trench fill and compressive upper plate strain. Extensional upper plate strain and trench fill 〈 0.5 km appear to be unfavorable conditions, as giant earthquakes have not been observed in these geodynamical environments during the last 111 years.
    Beschreibung: Published
    Beschreibung: L05304
    Beschreibung: 3.3. Geodinamica e struttura dell'interno della Terra
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): subduction zones ; trench sediment thickness ; Upper plate strain ; megathrust earthquakes ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: In the Apennines subduction (Italy), earthquakes mainly occur within overriding plate, along the chain axis. The events concentrate in the upper 15 km of the crust above the mantle wedge and focal solutions indicate normal faulting. In the foreland, the seismogenic volume affects the upper 35 km of the crust. Focal solutions indicate prevailing reverse faulting in the northern foreland and strike-slip faulting in the southern one. The deepening of the seismogenic volume from the chain axis to the foreland follows the deepening of the Moho and isotherms. The seismicity above the mantle wedge is associated with uplift of the chain axial zone, volcanism, high CO2 flux, and extension. The upward pushing of the asthenospheric mantle and the mantle-derived, CO2-rich fluids trapped within the crust below the chain axis causes this seismicity. All these features indicate that the axial zone of Apennines is affected by early rifting processes. In northern Italy, the widespread and deeper seismicity in the foreland reflects active accretion processes. In the southern foreland, the observed dextral strike-slip faulting and the lack of reverse focal solutions suggest that accretion processes are not active at present. In our interpretation of the Apennines subduction, the shallower seismicity of the overriding plate is due to the dynamics (uprising and eastward migration) of the asthenospheric wedge.
    Beschreibung: Published
    Beschreibung: Q02013
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Apenninnes ; crustal seismicity ; rifting ; subduction ; fluids ; geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 2459547 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: The West Philippine Basin (WPB) is a back-arc basin that opened within the Philippine Sea Plate (PSP) between the current position of the Palau-Kyushu Ridge (PKR) and the margin of East Asia. Spreading occurred at the Central Basin Fault (CBF) mainly from 54 until 30 Ma. The PKR was active since ~ 48 to 35 Ma constituting a single volcanic arc with the Izu-Bonin-Mariana (IBM) Arc. At ~ 42 Ma ago spreading rate and direction changed from NE-SW to NS, stopping at ~ 30 Ma. A late phase of spreading and volcanism took place between 30 and 26 Ma. ODP Leg 195 Site 1201 is located in the WPB, ~ 100 km west of the PKR, on 49 Ma crust formed by NE-SW spreading at the CBF. From ~ 35 to 30 Ma, pelagic sedimentation at Site 1201 was followed by turbidite sedimentation, fed mostly by arc-derived volcanic clasts. The geochemical and isotopic features of Site 1201 basement rocks, which represent Eocene WPB oceanic crust, compared with those of Site 1201 volcanics from the turbidite sequence, representing products of the early Mariana Arc (PKR), provide some insights into the early history of the IBM subduction factory. The WPB basement is made up of aphyric to porphyritic basalts with altered olivine, and preserved plagioclase, clinopyroxene and opaques. The PKR volcanics are porphyritic basalts and andesites with plagioclase, clino- and orthopyroxene, hornblende, alkali feldspar and opaques. Variable textures, and degree of alteration suggesting zeolite facies metamorphic grade, characterize both groups of rocks. The mineralogical and geochemical characteristics of the investigated Site 1201 PKR volcanics highlight their calc-alkaline affinity. This feature is at variance with both other PKR rocks, having mostly boninitic and arc tholeiitic affinity, and WPB basement basalt, having tholeiitic affinity, with some characters transitional to arc-like, as expected for a back-arc basin. New Sr and Nd isotope data, coupled with published Sr, Nd, Pb and Hf isotope data (Savov et al., 2006), highlight the Indian Ocean MORB-like character of Site 1201 basement basalts. This suggests that WPB volcanism tapped an upper mantle domain distinct from that underlying the Pacific Plate. The isotopic features of Site 1201 PKR volcanics are more enriched relative to those of basement basalts reflecting higher amounts of subduction-derived component(s) in the source of arc magmas. Th-Nb relationships and isotope geochemistry of the WPB basement and overlaying arc volcanics suggest addition of subducted sediment mostly as siliceous melts, to the mantle source of the arc volcanics. In that respect, Site 1201 PKR volcanics resemble calc-alkaline volcanics of the currently active Mariana Arc. In addition, the calc-alkaline affinity, unradiogenic neodymium, and inferred Middle Oligocene age of PKR volcanics, suggest they might represent an evolved stage of arc volcanism at Palau-Kyushu Ridge, perhaps shortly before the end of its activity.
    Beschreibung: Published
    Beschreibung: 157-171
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Petrogenesis ; mineral chemistry, ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.08. Volcanic arcs ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: Is compression across the northern Apennine fold-and-thrust system (Italy) still active? To address this question, we quantified the long-term rates of migration and shortening of the system along with the measurement errors. Our approach integrates structural geology, seismicity patterns, and statistical treatment of tectonic activity. On the basis of recently published surface and subsurface data, we found a migration rate of 8.85 ± 0.61 mm/yr. The inception age of individual fold structures follow closely this average rate, indicating that the system has been migrating at a constant rate for the past 17 Myr. Cumulative shortening of the system also increases linearly through time at 2.93 ± 0.31 mm/yr. The location of the youngest structures in the easternmost portion of the system coincides with a significant peak of seismic moment released by historical earthquakes. We conclude that not only these easternmost thrusts are still active, but also that they generate earthquakes.
    Beschreibung: Regione Marche
    Beschreibung: Published
    Beschreibung: 462–468
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): Active thrust faults ; active folds ; thrust belt migration ; shortening ; earthquakes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...