ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Sequence Data  (463)
  • Nature Publishing Group (NPG)  (463)
  • American Chemical Society (ACS)
Collection
Publisher
Years
  • 101
    Publication Date: 2009-07-17
    Description: Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756445/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756445/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berriman, Matthew -- Haas, Brian J -- LoVerde, Philip T -- Wilson, R Alan -- Dillon, Gary P -- Cerqueira, Gustavo C -- Mashiyama, Susan T -- Al-Lazikani, Bissan -- Andrade, Luiza F -- Ashton, Peter D -- Aslett, Martin A -- Bartholomeu, Daniella C -- Blandin, Gaelle -- Caffrey, Conor R -- Coghlan, Avril -- Coulson, Richard -- Day, Tim A -- Delcher, Art -- DeMarco, Ricardo -- Djikeng, Appolinaire -- Eyre, Tina -- Gamble, John A -- Ghedin, Elodie -- Gu, Yong -- Hertz-Fowler, Christiane -- Hirai, Hirohisha -- Hirai, Yuriko -- Houston, Robin -- Ivens, Alasdair -- Johnston, David A -- Lacerda, Daniela -- Macedo, Camila D -- McVeigh, Paul -- Ning, Zemin -- Oliveira, Guilherme -- Overington, John P -- Parkhill, Julian -- Pertea, Mihaela -- Pierce, Raymond J -- Protasio, Anna V -- Quail, Michael A -- Rajandream, Marie-Adele -- Rogers, Jane -- Sajid, Mohammed -- Salzberg, Steven L -- Stanke, Mario -- Tivey, Adrian R -- White, Owen -- Williams, David L -- Wortman, Jennifer -- Wu, Wenjie -- Zamanian, Mostafa -- Zerlotini, Adhemar -- Fraser-Liggett, Claire M -- Barrell, Barclay G -- El-Sayed, Najib M -- 086151/Wellcome Trust/United Kingdom -- 5D43TW006580/TW/FIC NIH HHS/ -- 5D43TW007012-03/TW/FIC NIH HHS/ -- AI054711-01A2/AI/NIAID NIH HHS/ -- AI48828/AI/NIAID NIH HHS/ -- R01 GM083873/GM/NIGMS NIH HHS/ -- R01 GM083873-07/GM/NIGMS NIH HHS/ -- R01 GM083873-08/GM/NIGMS NIH HHS/ -- R01 LM006845/LM/NLM NIH HHS/ -- R01 LM006845-08/LM/NLM NIH HHS/ -- R01 LM006845-09/LM/NLM NIH HHS/ -- U01 AI048828/AI/NIAID NIH HHS/ -- U01 AI048828-01/AI/NIAID NIH HHS/ -- U01 AI048828-02/AI/NIAID NIH HHS/ -- WT085775/Z/08/Z/Wellcome Trust/United Kingdom -- England -- Nature. 2009 Jul 16;460(7253):352-8. doi: 10.1038/nature08160.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Cambridge CB10 1SD, UK. mb4@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Evolution ; Exons/genetics ; Genes, Helminth/genetics ; Genome, Helminth/*genetics ; Host-Parasite Interactions/genetics ; Introns/genetics ; Molecular Sequence Data ; Physical Chromosome Mapping ; Schistosoma mansoni/drug effects/embryology/*genetics/physiology ; Schistosomiasis mansoni/drug therapy/parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2009-10-02
    Description: Efficient neurotransmission at chemical synapses relies on spatial congruence between the presynaptic active zone, where synaptic vesicles fuse, and the postsynaptic differentiation, where neurotransmitter receptors concentrate. Diverse molecular systems have evolved to localize receptors at synapses, but in most cases, they rely on scaffolding proteins localized below the plasma membrane. A few systems have been suggested to control the synaptic localization of neurotransmitter receptors through extracellular interactions, such as the pentraxins that bind AMPA receptors and trigger their aggregation. However, it is not yet clear whether these systems have a central role in the organization of postsynaptic domains in vivo or rather provide modulatory functions. Here we describe an extracellular scaffold that is necessary to cluster acetylcholine receptors at neuromuscular junctions in the nematode Caenorhabditis elegans. It involves the ectodomain of the previously identified transmembrane protein LEV-10 (ref. 6) and a novel extracellular protein, LEV-9. LEV-9 is secreted by the muscle cells and localizes at cholinergic neuromuscular junctions. Acetylcholine receptors, LEV-9 and LEV-10 are interdependent for proper synaptic localization and physically interact based on biochemical evidence. Notably, the function of LEV-9 relies on eight complement control protein (CCP) domains. These domains, also called 'sushi domains', are usually found in proteins regulating complement activity in the vertebrate immune system. Because the complement system does not exist in protostomes, our results suggest that some of the numerous uncharacterized CCP proteins expressed in the mammalian brain might be directly involved in the organization of the synapse, independently from immune functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gendrel, Marie -- Rapti, Georgia -- Richmond, Janet E -- Bessereau, Jean-Louis -- R01 MH073156/MH/NIMH NIH HHS/ -- England -- Nature. 2009 Oct 15;461(7266):992-6. doi: 10.1038/nature08430. Epub 2009 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ENS, Biology Department, Paris, F-75005 France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19794415" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*metabolism ; Caenorhabditis elegans Proteins/*chemistry/genetics/*metabolism/secretion ; Membrane Proteins/genetics/metabolism ; Molecular Sequence Data ; Muscles/metabolism ; Neuromuscular Junction/metabolism ; Organ Specificity ; Protein Binding ; Protein Structure, Tertiary ; Protein Transport ; Receptors, Cholinergic/*metabolism ; Viral Proteins/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2009-12-04
    Description: Estimates of the total number of bacterial species indicate that existing DNA sequence databases carry only a tiny fraction of the total amount of DNA sequence space represented by this division of life. Indeed, environmental DNA samples have been shown to encode many previously unknown classes of proteins and RNAs. Bioinformatics searches of genomic DNA from bacteria commonly identify new noncoding RNAs (ncRNAs) such as riboswitches. In rare instances, RNAs that exhibit more extensive sequence and structural conservation across a wide range of bacteria are encountered. Given that large structured RNAs are known to carry out complex biochemical functions such as protein synthesis and RNA processing reactions, identifying more RNAs of great size and intricate structure is likely to reveal additional biochemical functions that can be achieved by RNA. We applied an updated computational pipeline to discover ncRNAs that rival the known large ribozymes in size and structural complexity or that are among the most abundant RNAs in bacteria that encode them. These RNAs would have been difficult or impossible to detect without examining environmental DNA sequences, indicating that numerous RNAs with extraordinary size, structural complexity, or other exceptional characteristics remain to be discovered in unexplored sequence space.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140389/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140389/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weinberg, Zasha -- Perreault, Jonathan -- Meyer, Michelle M -- Breaker, Ronald R -- P01 GM022778/GM/NIGMS NIH HHS/ -- RR19895-02/RR/NCRR NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Dec 3;462(7273):656-9. doi: 10.1038/nature08586.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, New Haven, Connecticut 06520-8103, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956260" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*genetics/metabolism ; Base Sequence ; Gene Expression Regulation, Bacterial ; Genome, Bacterial/*genetics ; *Genomics ; Molecular Sequence Data ; *Nucleic Acid Conformation ; RNA, Bacterial/*chemistry/*genetics ; RNA, Untranslated/chemistry/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2009-01-13
    Description: Recurrent gene fusions, typically associated with haematological malignancies and rare bone and soft-tissue tumours, have recently been described in common solid tumours. Here we use an integrative analysis of high-throughput long- and short-read transcriptome sequencing of cancer cells to discover novel gene fusions. As a proof of concept, we successfully used integrative transcriptome sequencing to 're-discover' the BCR-ABL1 (ref. 10) gene fusion in a chronic myelogenous leukaemia cell line and the TMPRSS2-ERG gene fusion in a prostate cancer cell line and tissues. Additionally, we nominated, and experimentally validated, novel gene fusions resulting in chimaeric transcripts in cancer cell lines and tumours. Taken together, this study establishes a robust pipeline for the discovery of novel gene chimaeras using high-throughput sequencing, opening up an important class of cancer-related mutations for comprehensive characterization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725402/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725402/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maher, Christopher A -- Kumar-Sinha, Chandan -- Cao, Xuhong -- Kalyana-Sundaram, Shanker -- Han, Bo -- Jing, Xiaojun -- Sam, Lee -- Barrette, Terrence -- Palanisamy, Nallasivam -- Chinnaiyan, Arul M -- R01 CA132874/CA/NCI NIH HHS/ -- R01 CA132874-01A1/CA/NCI NIH HHS/ -- U01 CA111275/CA/NCI NIH HHS/ -- U01 CA111275-04/CA/NCI NIH HHS/ -- U54 DA 021519/DA/NIDA NIH HHS/ -- England -- Nature. 2009 Mar 5;458(7234):97-101. doi: 10.1038/nature07638. Epub 2009 Jan 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Michigan Center for Translational Pathology, Ann Arbor, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19136943" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Cell Line, Tumor ; Fusion Proteins, bcr-abl/analysis/genetics ; Gene Expression Profiling/*methods ; Humans ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics ; Male ; Molecular Sequence Data ; Neoplasms/*genetics ; Oncogene Proteins, Fusion/*analysis/*genetics ; Prostatic Neoplasms/genetics ; Sequence Analysis, DNA/instrumentation/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2009-06-12
    Description: In March and early April 2009, a new swine-origin influenza A (H1N1) virus (S-OIV) emerged in Mexico and the United States. During the first few weeks of surveillance, the virus spread worldwide to 30 countries (as of May 11) by human-to-human transmission, causing the World Health Organization to raise its pandemic alert to level 5 of 6. This virus has the potential to develop into the first influenza pandemic of the twenty-first century. Here we use evolutionary analysis to estimate the timescale of the origins and the early development of the S-OIV epidemic. We show that it was derived from several viruses circulating in swine, and that the initial transmission to humans occurred several months before recognition of the outbreak. A phylogenetic estimate of the gaps in genetic surveillance indicates a long period of unsampled ancestry before the S-OIV outbreak, suggesting that the reassortment of swine lineages may have occurred years before emergence in humans, and that the multiple genetic ancestry of S-OIV is not indicative of an artificial origin. Furthermore, the unsampled history of the epidemic means that the nature and location of the genetically closest swine viruses reveal little about the immediate origin of the epidemic, despite the fact that we included a panel of closely related and previously unpublished swine influenza isolates. Our results highlight the need for systematic surveillance of influenza in swine, and provide evidence that the mixing of new genetic elements in swine can result in the emergence of viruses with pandemic potential in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Gavin J D -- Vijaykrishna, Dhanasekaran -- Bahl, Justin -- Lycett, Samantha J -- Worobey, Michael -- Pybus, Oliver G -- Ma, Siu Kit -- Cheung, Chung Lam -- Raghwani, Jayna -- Bhatt, Samir -- Peiris, J S Malik -- Guan, Yi -- Rambaut, Andrew -- BB/E009670/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- HHSN266200700005C/PHS HHS/ -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2009 Jun 25;459(7250):1122-5. doi: 10.1038/nature08182.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Emerging Infectious Diseases & Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19516283" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Disease Outbreaks ; *Evolution, Molecular ; Genome, Viral/*genetics ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*genetics ; *Influenza, Human/epidemiology/virology ; Molecular Sequence Data ; Orthomyxoviridae Infections/epidemiology/veterinary/virology ; Phylogeny ; Reassortant Viruses/classification/*genetics ; Swine ; Swine Diseases/*virology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2009-06-02
    Description: Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility is an important mechanism used in many species to prevent inbreeding; it is controlled by a multi-allelic S locus. 'Self' (incompatible) pollen is discriminated from 'non-self' (compatible) pollen by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca(2+)-dependent signalling network, resulting in pollen inhibition and programmed cell death. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS (Papaver rhoeas pollen S), from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single-copy gene linked to the pistil S gene (currently called S, but referred to hereafter as PrsS for Papaver rhoeas stigma S determinant). Sequence analysis indicates that PrsS and PrpS are equally ancient and probably co-evolved. PrpS encodes a novel approximately 20-kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver self-incompatibility system. As a novel cell-cell recognition determinant it contributes to the available information concerning the origins and evolution of cell-cell recognition systems involved in discrimination between self and non-self, which also include histocompatibility systems in primitive chordates and vertebrates.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699350/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2699350/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, Michael J -- de Graaf, Barend H J -- Hadjiosif, Natalie -- Perry, Ruth M -- Poulter, Natalie S -- Osman, Kim -- Vatovec, Sabina -- Harper, Andrea -- Franklin, F Christopher H -- Franklin-Tong, Vernonica E -- BB/C501325/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2009 Jun 18;459(7249):992-5. doi: 10.1038/nature08027. Epub 2009 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19483678" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Cell Membrane/metabolism ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Linkage ; Molecular Sequence Data ; Papaver/*physiology ; Plant Proteins/chemistry/genetics/metabolism ; Pollen/cytology/*physiology ; Pollination/physiology ; Reproduction/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2009-02-03
    Description: Microbial symbioses are essential for the normal development and growth of animals. Often, symbionts must be acquired from the environment during each generation, and identification of the relevant symbiotic partner against a myriad of unwanted relationships is a formidable task. Although examples of this specificity are well-documented, the genetic mechanisms governing it are poorly characterized. Here we show that the two-component sensor kinase RscS is necessary and sufficient for conferring efficient colonization of Euprymna scolopes squid by bioluminescent Vibrio fischeri from the North Pacific Ocean. In the squid symbiont V. fischeri ES114, RscS controls light-organ colonization by inducing the Syp exopolysaccharide, a mediator of biofilm formation during initial infection. A genome-level comparison revealed that rscS, although present in squid symbionts, is absent from the fish symbiont V. fischeri MJ11. We found that heterologous expression of RscS in strain MJ11 conferred the ability to colonize E. scolopes in a manner comparable to that of natural squid isolates. Furthermore, phylogenetic analyses support an important role for rscS in the evolution of the squid symbiosis. Our results demonstrate that a regulatory gene can alter the host range of animal-associated bacteria. We show that, by encoding a regulator and not an effector that interacts directly with the host, a single gene can contribute to the evolution of host specificity by switching 'on' pre-existing capabilities for interaction with animal tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713604/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713604/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mandel, Mark J -- Wollenberg, Michael S -- Stabb, Eric V -- Visick, Karen L -- Ruby, Edward G -- F32 GM078760/GM/NIGMS NIH HHS/ -- F32 GM078760-03/GM/NIGMS NIH HHS/ -- R01 GM059690/GM/NIGMS NIH HHS/ -- R01 GM059690-07/GM/NIGMS NIH HHS/ -- R01 GM059690-08/GM/NIGMS NIH HHS/ -- R01 RR012294/RR/NCRR NIH HHS/ -- R01 RR012294-13/RR/NCRR NIH HHS/ -- T32 GM007215/GM/NIGMS NIH HHS/ -- T32 GM007215-33/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Mar 12;458(7235):215-8. doi: 10.1038/nature07660. Epub 2009 Feb 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, Wisconsin 53706, USA. mmandel@wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19182778" target="_blank"〉PubMed〈/a〉
    Keywords: Aliivibrio fischeri/*genetics/*growth & development ; Animal Structures/microbiology ; Animals ; Biofilms/growth & development ; Decapodiformes/*microbiology ; Molecular Sequence Data ; Pacific Ocean ; Phylogeny ; Polysaccharides, Bacterial/genetics/metabolism ; Protein Kinases/genetics/metabolism ; Symbiosis/genetics/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2009-07-17
    Description: Schistosoma japonicum is a parasitic flatworm that causes human schistosomiasis, which is a significant cause of morbidity in China and the Philippines. Here we present a draft genomic sequence for the worm. The genome provides a global insight into the molecular architecture and host interaction of this complex metazoan pathogen, revealing that it can exploit host nutrients, neuroendocrine hormones and signalling pathways for growth, development and maturation. Having a complex nervous system and a well-developed sensory system, S. japonicum can accept stimulation of the corresponding ligands as a physiological response to different environments, such as fresh water or the tissues of its intermediate and mammalian hosts. Numerous proteases, including cercarial elastase, are implicated in mammalian skin penetration and haemoglobin degradation. The genomic information will serve as a valuable platform to facilitate development of new interventions for schistosomiasis control.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium -- 085775/Wellcome Trust/United Kingdom -- AI39461/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Jul 16;460(7253):345-51. doi: 10.1038/nature08140.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19606140" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Endocrine System/metabolism ; Evolution, Molecular ; Gene Duplication ; Genes, Helminth/genetics ; Genome, Helminth/*genetics ; Host-Parasite Interactions/*genetics ; Immune System/metabolism ; Inflammation Mediators/metabolism ; Molecular Sequence Data ; Nervous System/metabolism ; Peptide Hydrolases/genetics/metabolism ; Phylogeny ; Protein Structure, Tertiary/genetics ; Schistosoma japonicum/embryology/enzymology/*genetics/*physiology ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2008-11-28
    Description: Primary productivity in 30-40% of the world's oceans is limited by availability of the micronutrient iron. Regions with chronically low iron concentrations are sporadically pulsed with new iron inputs by way of dust or lateral advection from continental margins. Addition of iron to surface waters in these areas induces massive phytoplankton blooms dominated primarily by pennate diatoms. Here we provide evidence that the bloom-forming pennate diatoms Pseudo-nitzschia and Fragilariopsis use the iron-concentrating protein, ferritin, to safely store iron. Ferritin has not been reported previously in any member of the Stramenopiles, a diverse eukaryotic lineage that includes unicellular algae, macroalgae and plant parasites. Phylogenetic analyses suggest that ferritin may have arisen in this small subset of diatoms through a lateral gene transfer. The crystal structure and functional assays of recombinant ferritin derived from Pseudo-nitzschia multiseries reveal a maxi-ferritin that exhibits ferroxidase activity and binds iron. The protein is predicted to be targeted to the chloroplast to control the distribution and storage of iron for proper functioning of the photosynthetic machinery. Abundance of Pseudo-nitzschia ferritin transcripts is regulated by iron nutritional status, and is closely tied to the loss and recovery of photosynthetic competence. Enhanced iron storage with ferritin allows the oceanic diatom Pseudo-nitzschia granii to undergo several more cell divisions in the absence of iron than the comparably sized, oceanic centric diatom Thalassiosira oceanica. Ferritin in pennate diatoms probably contributes to their success in chronically low-iron regions that receive intermittent iron inputs, and provides an explanation for the importance of these organisms in regulating oceanic CO(2) over geological timescales.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marchetti, Adrian -- Parker, Micaela S -- Moccia, Lauren P -- Lin, Ellen O -- Arrieta, Angele L -- Ribalet, Francois -- Murphy, Michael E P -- Maldonado, Maria T -- Armbrust, E Virginia -- England -- Nature. 2009 Jan 22;457(7228):467-70. doi: 10.1038/nature07539. Epub 2008 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Oceanography, University of Washington, Box 357940, Seattle, Washington 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19037243" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Ceruloplasmin/metabolism ; Crystallography, X-Ray ; Diatoms/chemistry/genetics/growth & development/*metabolism ; *Eutrophication ; Ferritins/*chemistry/genetics/*metabolism ; Gene Transfer, Horizontal ; Iron/deficiency/*metabolism ; Marine Biology ; Models, Molecular ; Molecular Sequence Data ; Phylogeny ; RNA, Messenger/analysis/genetics ; Seawater
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2009-10-23
    Description: Sex determination in plants leads to the development of unisexual flowers from an originally bisexual floral meristem. This mechanism results in the enhancement of outcrossing and promotes genetic variability, the consequences of which are advantageous to the evolution of a species. In melon, sexual forms are controlled by identity of the alleles at the andromonoecious (a) and gynoecious (g) loci. We previously showed that the a gene encodes an ethylene biosynthesis enzyme, CmACS-7, that represses stamen development in female flowers. Here we show that the transition from male to female flowers in gynoecious lines results from epigenetic changes in the promoter of a transcription factor, CmWIP1. This natural and heritable epigenetic change resulted from the insertion of a transposon, which is required for initiation and maintenance of the spreading of DNA methylation to the CmWIP1 promoter. Expression of CmWIP1 leads to carpel abortion, resulting in the development of unisexual male flowers. Moreover, we show that CmWIP1 indirectly represses the expression of the andromonoecious gene, CmACS-7, to allow stamen development. Together our data indicate a model in which CmACS-7 and CmWIP1 interact to control the development of male, female and hermaphrodite flowers in melon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martin, Antoine -- Troadec, Christelle -- Boualem, Adnane -- Rajab, Mazen -- Fernandez, Ronan -- Morin, Halima -- Pitrat, Michel -- Dogimont, Catherine -- Bendahmane, Abdelhafid -- England -- Nature. 2009 Oct 22;461(7267):1135-8. doi: 10.1038/nature08498.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉INRA-CNRS, UMR1165, Unite de Recherche en Genomique Vegetale, 2 rue Gaston Cremieux, F-91057 Evry, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847267" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cucurbitaceae/enzymology/*genetics/physiology ; DNA Methylation ; DNA Transposable Elements/*genetics ; Epigenesis, Genetic/*genetics ; Ethylenes/biosynthesis ; Flowers/physiology ; Genes, Plant/genetics/physiology ; Lyases/metabolism ; Molecular Sequence Data ; Polymorphism, Single Nucleotide/genetics ; Promoter Regions, Genetic ; *Sex Determination Processes ; Transcription Factors/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2009-12-25
    Description: Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic 'phylogenomic' efforts to compile a phylogeny-driven 'Genomic Encyclopedia of Bacteria and Archaea' in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3073058/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Dongying -- Hugenholtz, Philip -- Mavromatis, Konstantinos -- Pukall, Rudiger -- Dalin, Eileen -- Ivanova, Natalia N -- Kunin, Victor -- Goodwin, Lynne -- Wu, Martin -- Tindall, Brian J -- Hooper, Sean D -- Pati, Amrita -- Lykidis, Athanasios -- Spring, Stefan -- Anderson, Iain J -- D'haeseleer, Patrik -- Zemla, Adam -- Singer, Mitchell -- Lapidus, Alla -- Nolan, Matt -- Copeland, Alex -- Han, Cliff -- Chen, Feng -- Cheng, Jan-Fang -- Lucas, Susan -- Kerfeld, Cheryl -- Lang, Elke -- Gronow, Sabine -- Chain, Patrick -- Bruce, David -- Rubin, Edward M -- Kyrpides, Nikos C -- Klenk, Hans-Peter -- Eisen, Jonathan A -- R01 GM054592-09/GM/NIGMS NIH HHS/ -- R01 GM067012-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1056-60. doi: 10.1038/nature08656.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DOE Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033048" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/chemistry ; Amino Acid Sequence ; Archaea/*classification/*genetics ; Bacteria/*classification/*genetics ; Bacterial Proteins/chemistry ; Biodiversity ; Databases, Genetic ; Genes, rRNA/genetics ; Genome, Archaeal/*genetics ; Genome, Bacterial/*genetics ; Models, Molecular ; Molecular Sequence Data ; *Phylogeny ; Protein Structure, Tertiary ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2010-07-02
    Description: Pheromone-based behaviours are crucial in animals from insects to mammals, and reproductive isolation is often based on pheromone differences. However, the genetic mechanisms by which pheromone signals change during the evolution of new species are largely unknown. In the sexual communication system of moths (Insecta: Lepidoptera), females emit a species-specific pheromone blend that attracts males over long distances. The European corn borer, Ostrinia nubilalis, consists of two sex pheromone races, Z and E, that use different ratios of the cis and trans isomers of acetate pheromone components. This subtle difference leads to strong reproductive isolation in the field between the two races, which could represent a first step in speciation. Female sex pheromone production and male behavioural response are under the control of different major genes, but the identity of these genes is unknown. Here we show that allelic variation in a fatty-acyl reductase gene essential for pheromone biosynthesis accounts for the phenotypic variation in female pheromone production, leading to race-specific signals. Both the cis and trans isomers of the pheromone precursors are produced by both races, but the precursors are differentially reduced to yield opposite ratios in the final pheromone blend as a result of the substrate specificity of the enzymes encoded by the Z and E alleles. This is the first functional characterization of a gene contributing to intraspecific behavioural reproductive isolation in moths, highlighting the importance of evolutionary diversification in a lepidopteran-specific family of reductases. Accumulation of substitutions in the coding region of a single biosynthetic enzyme can produce pheromone differences resulting in reproductive isolation, with speciation as a potential end result.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lassance, Jean-Marc -- Groot, Astrid T -- Lienard, Marjorie A -- Antony, Binu -- Borgwardt, Christin -- Andersson, Fredrik -- Hedenstrom, Erik -- Heckel, David G -- Lofstedt, Christer -- England -- Nature. 2010 Jul 22;466(7305):486-9. doi: 10.1038/nature09058. Epub 2010 Jun 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Lund University, 22362 Lund, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20592730" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; Female ; Isomerism ; Male ; Molecular Sequence Data ; Moths/classification/enzymology/genetics/*physiology ; Oxidoreductases/*genetics/*metabolism ; Phylogeny ; RNA/analysis/genetics/metabolism ; Sex Attractants/biosynthesis/chemistry/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2010-03-12
    Description: Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rubin, Carl-Johan -- Zody, Michael C -- Eriksson, Jonas -- Meadows, Jennifer R S -- Sherwood, Ellen -- Webster, Matthew T -- Jiang, Lin -- Ingman, Max -- Sharpe, Ted -- Ka, Sojeong -- Hallbook, Finn -- Besnier, Francois -- Carlborg, Orjan -- Bed'hom, Bertrand -- Tixier-Boichard, Michele -- Jensen, Per -- Siegel, Paul -- Lindblad-Toh, Kerstin -- Andersson, Leif -- England -- Nature. 2010 Mar 25;464(7288):587-91. doi: 10.1038/nature08832. Epub 2010 Mar 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-75123 Uppsala, Sweden.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20220755" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biological Evolution ; Chickens/*genetics ; Female ; Genetic Loci/*genetics ; Genome/*genetics ; Male ; Molecular Sequence Data ; Polymorphism, Single Nucleotide ; Selection, Genetic/*genetics ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Deletion
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2010-02-05
    Description: The M2 protein of influenza A virus is a membrane-spanning tetrameric proton channel targeted by the antiviral drugs amantadine and rimantadine. Resistance to these drugs has compromised their effectiveness against many influenza strains, including pandemic H1N1. A recent crystal structure of M2(22-46) showed electron densities attributed to a single amantadine in the amino-terminal half of the pore, indicating a physical occlusion mechanism for inhibition. However, a solution NMR structure of M2(18-60) showed four rimantadines bound to the carboxy-terminal lipid-facing surface of the helices, suggesting an allosteric mechanism. Here we show by solid-state NMR spectroscopy that two amantadine-binding sites exist in M2 in phospholipid bilayers. The high-affinity site, occupied by a single amantadine, is located in the N-terminal channel lumen, surrounded by residues mutated in amantadine-resistant viruses. Quantification of the protein-amantadine distances resulted in a 0.3 A-resolution structure of the high-affinity binding site. The second, low-affinity, site was observed on the C-terminal protein surface, but only when the drug reaches high concentrations in the bilayer. The orientation and dynamics of the drug are distinct in the two sites, as shown by (2)H NMR. These results indicate that amantadine physically occludes the M2 channel, thus paving the way for developing new antiviral drugs against influenza viruses. The study demonstrates the ability of solid-state NMR to elucidate small-molecule interactions with membrane proteins and determine high-resolution structures of their complexes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cady, Sarah D -- Schmidt-Rohr, Klaus -- Wang, Jun -- Soto, Cinque S -- Degrado, William F -- Hong, Mei -- AI74571/AI/NIAID NIH HHS/ -- GM088204/GM/NIGMS NIH HHS/ -- GM56423/GM/NIGMS NIH HHS/ -- R01 GM056423/GM/NIGMS NIH HHS/ -- R01 GM056423-12/GM/NIGMS NIH HHS/ -- R01 GM088204/GM/NIGMS NIH HHS/ -- R01 GM088204-01/GM/NIGMS NIH HHS/ -- U01 AI074571/AI/NIAID NIH HHS/ -- U01 AI074571-02/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Feb 4;463(7281):689-92. doi: 10.1038/nature08722.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Iowa State University, Ames, Iowa 50011 2, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20130653" target="_blank"〉PubMed〈/a〉
    Keywords: Amantadine/chemistry/*metabolism/pharmacology ; Amino Acid Sequence ; Antiviral Agents/chemistry/*metabolism/pharmacology ; Binding Sites ; Crystallography, X-Ray ; Dimyristoylphosphatidylcholine/chemistry/metabolism ; Hydrogen-Ion Concentration ; Influenza A virus/*chemistry/drug effects ; Lipid Bilayers/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; Structure-Activity Relationship ; Temperature ; Viral Matrix Proteins/antagonists & inhibitors/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2010-07-09
    Description: Large-conductance, voltage- and calcium-activated potassium (BK, or K(Ca)1.1) channels are ubiquitously expressed in electrically excitable and non-excitable cells, either as alpha-subunit (BKalpha) tetramers or together with tissue specific auxiliary beta-subunits (beta1-beta4). Activation of BK channels typically requires coincident membrane depolarization and elevation in free cytosolic Ca(2+) concentration ([Ca(2+)](i)), which are not physiological conditions for most non-excitable cells. Here we present evidence that in non-excitable LNCaP prostate cancer cells, BK channels can be activated at negative voltages without rises in [Ca(2+)](i) through their complex with an auxiliary protein, leucine-rich repeat (LRR)-containing protein 26 (LRRC26). LRRC26 modulates the gating of a BK channel by enhancing the allosteric coupling between voltage-sensor activation and the channel's closed-open transition. This finding reveals a novel auxiliary protein of a voltage-gated ion channel that gives an unprecedentedly large negative shift ( approximately -140 mV) in voltage dependence and provides a molecular basis for activation of BK channels at physiological voltages and calcium levels in non-excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Jiusheng -- Aldrich, Richard W -- England -- Nature. 2010 Jul 22;466(7305):513-6. doi: 10.1038/nature09162. Epub 2010 Jul 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Neurobiology, Center for Learning and Memory, University of Texas, Austin, Texas 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20613726" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Amino Acid Sequence ; Animals ; *Calcium/analysis ; Cell Line, Tumor ; Humans ; Ion Channel Gating/*physiology ; Large-Conductance Calcium-Activated Potassium Channels/genetics/*metabolism ; Male ; Membrane Potentials ; Mice ; Molecular Sequence Data ; Neoplasm Proteins/chemistry/genetics/*metabolism ; Prostatic Neoplasms/metabolism ; Rats
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2010-10-15
    Description: Eukaryotes and archaea use a protease called the proteasome that has an integral role in maintaining cellular function through the selective degradation of proteins. Proteolysis occurs in a barrel-shaped 20S core particle, which in Thermoplasma acidophilum is built from four stacked homoheptameric rings of subunits, alpha and beta, arranged alpha(7)beta(7)beta(7)alpha(7) (ref. 5). These rings form three interconnected cavities, including a pair of antechambers (formed by alpha(7)beta(7)) through which substrates are passed before degradation and a catalytic chamber (beta(7)beta(7)) where the peptide-bond hydrolysis reaction occurs. Although it is clear that substrates must be unfolded to enter through narrow, gated passageways (13 A in diameter) located on the alpha-rings, the structural and dynamical properties of substrates inside the proteasome antechamber remain unclear. Confinement in the antechamber might be expected to promote folding and thus impede proteolysis. Here we investigate the folding, stability and dynamics of three small protein substrates in the antechamber by methyl transverse-relaxation-optimized NMR spectroscopy. We show that these substrates interact actively with the antechamber walls and have drastically altered kinetic and equilibrium properties that maintain them in unstructured states so as to be accessible for hydrolysis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruschak, Amy M -- Religa, Tomasz L -- Breuer, Sarah -- Witt, Susanne -- Kay, Lewis E -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2010 Oct 14;467(7317):868-71. doi: 10.1038/nature09444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Molecular Genetics, Biochemistry and Chemistry, The University of Toronto, Toronto, Ontario M5S 1A8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944750" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Hydrolysis ; Kinetics ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Proteasome Endopeptidase Complex/*chemistry/*metabolism ; Protein Folding ; *Protein Processing, Post-Translational ; Protein Stability ; Protein Subunits/chemistry/metabolism ; *Protein Unfolding ; Thermodynamics ; Thermoplasma/enzymology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2010-06-11
    Description: Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell's RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat.P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat.P-TEFb complex and block HIV replication.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2885016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tahirov, Tahir H -- Babayeva, Nigar D -- Varzavand, Katayoun -- Cooper, Jeffrey J -- Sedore, Stanley C -- Price, David H -- AI074392/AI/NIAID NIH HHS/ -- GM082923/GM/NIGMS NIH HHS/ -- GM35500/GM/NIGMS NIH HHS/ -- P30CA036727/CA/NCI NIH HHS/ -- P41 RR015301/RR/NCRR NIH HHS/ -- P41 RR015301-075443/RR/NCRR NIH HHS/ -- R01 GM035500/GM/NIGMS NIH HHS/ -- R01 GM035500-20/GM/NIGMS NIH HHS/ -- R01 GM035500-21/GM/NIGMS NIH HHS/ -- R01 GM035500-22/GM/NIGMS NIH HHS/ -- R01 GM035500-23/GM/NIGMS NIH HHS/ -- R01 GM035500-24/GM/NIGMS NIH HHS/ -- R01 GM082923/GM/NIGMS NIH HHS/ -- R01 GM082923-01A2/GM/NIGMS NIH HHS/ -- R01 GM082923-02/GM/NIGMS NIH HHS/ -- R01 GM082923-02S1/GM/NIGMS NIH HHS/ -- R21 AI074392/AI/NIAID NIH HHS/ -- R21 AI074392-01A1/AI/NIAID NIH HHS/ -- R21 AI074392-02/AI/NIAID NIH HHS/ -- R33 AI074392/AI/NIAID NIH HHS/ -- R33 AI074392-03/AI/NIAID NIH HHS/ -- RR-15301/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):747-51. doi: 10.1038/nature09131.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198-7696, USA. ttahirov@unmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535204" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; Cyclin T/chemistry/metabolism ; Cyclin-Dependent Kinase 9/chemistry/metabolism ; Enzyme Activation ; HIV-1/*chemistry ; Humans ; Models, Molecular ; Molecular Sequence Data ; Positive Transcriptional Elongation Factor B/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; tat Gene Products, Human Immunodeficiency Virus/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2010-02-19
    Description: Local adaptations within species are often governed by several interacting genes scattered throughout the genome. Single-locus models of selection cannot explain the maintenance of such complex variation because recombination separates co-adapted alleles. Here we report a previously unrecognized type of intraspecific multi-locus genetic variation that has been maintained over a vast period. The galactose (GAL) utilization gene network of Saccharomyces kudriavzevii, a relative of brewer's yeast, exists in two distinct states: a functional gene network in Portuguese strains and, in Japanese strains, a non-functional gene network of allelic pseudogenes. Genome sequencing of all available S. kudriavzevii strains revealed that none of the functional GAL genes were acquired from other species. Rather, these polymorphisms have been maintained for nearly the entire history of the species, despite more recent gene flow genome-wide. Experimental evidence suggests that inactivation of the GAL3 and GAL80 regulatory genes facilitated the origin and long-term maintenance of the two gene network states. This striking example of a balanced unlinked gene network polymorphism introduces a remarkable type of intraspecific variation that may be widespread.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834422/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834422/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hittinger, Chris Todd -- Goncalves, Paula -- Sampaio, Jose Paulo -- Dover, Jim -- Johnston, Mark -- Rokas, Antonis -- 2T32HG00045/HG/NHGRI NIH HHS/ -- 5R01GM032540/GM/NIGMS NIH HHS/ -- R01 GM032540/GM/NIGMS NIH HHS/ -- R01 GM032540-27/GM/NIGMS NIH HHS/ -- T32 HG000045/HG/NHGRI NIH HHS/ -- T32 HG000045-10/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 4;464(7285):54-8. doi: 10.1038/nature08791. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164837" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; *Evolution, Molecular ; Galactose/metabolism ; Gene Regulatory Networks/*genetics ; Genes, Fungal/*genetics ; Genome, Fungal ; Japan ; Molecular Sequence Data ; Phylogeny ; Polymorphism, Genetic/*genetics ; Portugal ; Pseudogenes/genetics ; Repressor Proteins/genetics/metabolism ; Saccharomyces/classification/*genetics/metabolism ; Saccharomyces cerevisiae Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2010-08-21
    Description: A diploid organism has two copies of each gene, one inherited from each parent. The expression of two inherited alleles is sometimes biased by the effects known as dominant/recessive relationships, which determine the final phenotype of the organism. To explore the mechanisms underlying these relationships, we have examined the monoallelic expression of S-locus protein 11 genes (SP11), which encode the male determinants of self-incompatibility in Brassica. We previously reported that SP11 expression was monoallelic in some S heterozygotes, and that the promoter regions of recessive SP11 alleles were specifically methylated in the anther tapetum. Here we show that this methylation is controlled by trans-acting small non-coding RNA (sRNA). We identified inverted genomic sequences that were similar to the recessive SP11 promoters in the flanking regions of dominant SP11 alleles. These sequences were specifically expressed in the anther tapetum and processed into 24-nucleotide sRNA, named SP11 methylation inducer (Smi). Introduction of the Smi genomic region into the recessive S homozygotes triggered the methylation of the promoter of recessive SP11 alleles and repressed their transcription. This is an example showing sRNA encoded in the flanking region of a dominant allele acts in trans to induce transcriptional silencing of the recessive allele. Our finding may provide new insights into the widespread monoallelic gene expression systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tarutani, Yoshiaki -- Shiba, Hiroshi -- Iwano, Megumi -- Kakizaki, Tomohiro -- Suzuki, Go -- Watanabe, Masao -- Isogai, Akira -- Takayama, Seiji -- England -- Nature. 2010 Aug 19;466(7309):983-6. doi: 10.1038/nature09308.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20725042" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Base Sequence ; Brassica/*genetics/physiology ; DNA Methylation ; Diploidy ; Flowers/genetics ; Gene Expression Regulation, Plant/genetics ; *Gene Silencing ; Genes, Dominant/*genetics ; Genes, Plant/*genetics ; Genes, Recessive/genetics ; Haplotypes/genetics ; Heterozygote ; Homozygote ; Molecular Sequence Data ; Phenotype ; Plant Infertility/*genetics/physiology ; Plant Proteins/genetics ; Plants, Genetically Modified ; Pollen/genetics/metabolism ; Pollination/genetics ; Promoter Regions, Genetic/genetics ; RNA, Plant/*genetics ; RNA, Untranslated/*genetics ; Reproduction/genetics/physiology ; Transcription, Genetic/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2010-11-19
    Description: Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system. CdiB facilitates secretion of the CdiA 'exoprotein' onto the cell surface. An additional small immunity protein (CdiI) protects CDI(+) cells from autoinhibition. The mechanisms by which CDI blocks cell growth and by which CdiI counteracts this growth arrest are unknown. Moreover, the existence of CDI activity in other bacteria has not been explored. Here we show that the CDI growth inhibitory activity resides within the carboxy-terminal region of CdiA (CdiA-CT), and that CdiI binds and inactivates cognate CdiA-CT, but not heterologous CdiA-CT. Bioinformatic and experimental analyses show that multiple bacterial species encode functional CDI systems with high sequence variability in the CdiA-CT and CdiI coding regions. CdiA-CT heterogeneity implies that a range of toxic activities are used during CDI. Indeed, CdiA-CTs from uropathogenic E. coli and the plant pathogen Dickeya dadantii have different nuclease activities, each providing a distinct mechanism of growth inhibition. Finally, we show that bacteria lacking the CdiA-CT and CdiI coding regions are unable to compete with isogenic wild-type CDI(+) cells both in laboratory media and on a eukaryotic host. Taken together, these results suggest that CDI systems constitute an intricate immunity network with an important function in bacterial competition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058911/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058911/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aoki, Stephanie K -- Diner, Elie J -- de Roodenbeke, Claire T'kint -- Burgess, Brandt R -- Poole, Stephen J -- Braaten, Bruce A -- Jones, Allison M -- Webb, Julia S -- Hayes, Christopher S -- Cotter, Peggy A -- Low, David A -- AI043986/AI/NIAID NIH HHS/ -- GM078634/GM/NIGMS NIH HHS/ -- R01 GM078634/GM/NIGMS NIH HHS/ -- U54 AI065359/AI/NIAID NIH HHS/ -- U54 AI065359-056074/AI/NIAID NIH HHS/ -- U54 AI065359-066074/AI/NIAID NIH HHS/ -- U54 AI065359-07/AI/NIAID NIH HHS/ -- U54AI065359/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):439-42. doi: 10.1038/nature09490.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular, Cellular, and Developmental Biology, University of California - Santa Barbara (UCSB), Santa Barbara, California 93106-9625, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085179" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Toxins/chemistry/genetics/immunology/*metabolism ; Contact Inhibition/immunology/physiology ; Enterobacteriaceae/enzymology/genetics/metabolism ; Escherichia coli Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Membrane Proteins/antagonists & inhibitors/chemistry/genetics/metabolism ; Molecular Sequence Data ; Uropathogenic Escherichia coli/enzymology/genetics/growth & ; development/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2010-05-14
    Description: Nature's high-performance polymer, spider silk, consists of specific proteins, spidroins, with repetitive segments flanked by conserved non-repetitive domains. Spidroins are stored as a highly concentrated fluid dope. On silk formation, intermolecular interactions between repeat regions are established that provide strength and elasticity. How spiders manage to avoid premature spidroin aggregation before self-assembly is not yet established. A pH drop to 6.3 along the spider's spinning apparatus, altered salt composition and shear forces are believed to trigger the conversion to solid silk, but no molecular details are known. Miniature spidroins consisting of a few repetitive spidroin segments capped by the carboxy-terminal domain form metre-long silk-like fibres irrespective of pH. We discovered that incorporation of the amino-terminal domain of major ampullate spidroin 1 from the dragline of the nursery web spider Euprosthenops australis (NT) into mini-spidroins enables immediate, charge-dependent self-assembly at pH values around 6.3, but delays aggregation above pH 7. The X-ray structure of NT, determined to 1.7 A resolution, shows a homodimer of dipolar, antiparallel five-helix bundle subunits that lack homologues. The overall dimeric structure and observed charge distribution of NT is expected to be conserved through spider evolution and in all types of spidroins. Our results indicate a relay-like mechanism through which the N-terminal domain regulates spidroin assembly by inhibiting precocious aggregation during storage, and accelerating and directing self-assembly as the pH is lowered along the spider's silk extrusion duct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Askarieh, Glareh -- Hedhammar, My -- Nordling, Kerstin -- Saenz, Alejandra -- Casals, Cristina -- Rising, Anna -- Johansson, Jan -- Knight, Stefan D -- England -- Nature. 2010 May 13;465(7295):236-8. doi: 10.1038/nature08962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Oslo University, 1033 Blindern, 0315 Oslo, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20463740" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Circular Dichroism ; Conserved Sequence ; Crystallography, X-Ray ; Hydrogen-Ion Concentration ; Models, Molecular ; Molecular Sequence Data ; Protein Structure, Tertiary ; Sequence Alignment ; Silk/*chemistry/*metabolism/ultrastructure ; Spiders/*chemistry ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2010-01-08
    Description: Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818285/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818285/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horie, Masayuki -- Honda, Tomoyuki -- Suzuki, Yoshiyuki -- Kobayashi, Yuki -- Daito, Takuji -- Oshida, Tatsuo -- Ikuta, Kazuyoshi -- Jern, Patric -- Gojobori, Takashi -- Coffin, John M -- Tomonaga, Keizo -- R37 CA 089441/CA/NCI NIH HHS/ -- R37 CA089441/CA/NCI NIH HHS/ -- R37 CA089441-09/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):84-7. doi: 10.1038/nature08695.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Virology, Research Institute for Microbial Diseases (BIKEN), Osaka University, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Borna disease virus/genetics/physiology ; Bornaviridae/*genetics/physiology ; Cell Line ; Conserved Sequence/genetics ; Evolution, Molecular ; Genes, Viral/*genetics ; Genome/*genetics ; Host-Pathogen Interactions/genetics ; Humans ; Mammals/*genetics/*virology ; Models, Genetic ; Molecular Sequence Data ; Open Reading Frames/genetics ; Phylogeny ; Reverse Transcription ; Time Factors ; Virus Integration/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2010-03-26
    Description: Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ettwig, Katharina F -- Butler, Margaret K -- Le Paslier, Denis -- Pelletier, Eric -- Mangenot, Sophie -- Kuypers, Marcel M M -- Schreiber, Frank -- Dutilh, Bas E -- Zedelius, Johannes -- de Beer, Dirk -- Gloerich, Jolein -- Wessels, Hans J C T -- van Alen, Theo -- Luesken, Francisca -- Wu, Ming L -- van de Pas-Schoonen, Katinka T -- Op den Camp, Huub J M -- Janssen-Megens, Eva M -- Francoijs, Kees-Jan -- Stunnenberg, Henk -- Weissenbach, Jean -- Jetten, Mike S M -- Strous, Marc -- England -- Nature. 2010 Mar 25;464(7288):543-8. doi: 10.1038/nature08883.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Radboud University Nijmegen, IWWR, Department of Microbiology, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands. k.ettwig@science.ru.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336137" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaerobiosis ; Bacteria/classification/enzymology/genetics/*metabolism ; Genome, Bacterial/genetics ; Methane/*metabolism ; Molecular Sequence Data ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Oxygenases/genetics ; Phylogeny ; Soil Microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2010-08-03
    Description: The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159035/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3159035/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Lawrence K -- Ginsburg, Michael A -- Crovace, Claudia -- Donohoe, Mhairi -- Stock, Daniela -- MC_U105170645/Medical Research Council/United Kingdom -- P41 RR007707/RR/NCRR NIH HHS/ -- P41 RR007707-17/RR/NCRR NIH HHS/ -- RR007707/RR/NCRR NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2010 Aug 19;466(7309):996-1000. doi: 10.1038/nature09300. Epub 2010 Aug 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural and Computational Biology Division, The Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20676082" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/*chemistry/genetics/*metabolism ; Flagella/*chemistry/genetics/*physiology ; Models, Molecular ; Molecular Motor Proteins/*chemistry/genetics/metabolism ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Tertiary ; *Rotation ; Static Electricity ; Structure-Activity Relationship ; Thermotoga maritima/chemistry ; *Torque
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2010-10-01
    Description: Semaphorins and their receptor plexins constitute a pleiotropic cell-signalling system that is used in a wide variety of biological processes, and both protein families have been implicated in numerous human diseases. The binding of soluble or membrane-anchored semaphorins to the membrane-distal region of the plexin ectodomain activates plexin's intrinsic GTPase-activating protein (GAP) at the cytoplasmic region, ultimately modulating cellular adhesion behaviour. However, the structural mechanism underlying the receptor activation remains largely unknown. Here we report the crystal structures of the semaphorin 6A (Sema6A) receptor-binding fragment and the plexin A2 (PlxnA2) ligand-binding fragment in both their pre-signalling (that is, before binding) and signalling (after complex formation) states. Before binding, the Sema6A ectodomain was in the expected 'face-to-face' homodimer arrangement, similar to that adopted by Sema3A and Sema4D, whereas PlxnA2 was in an unexpected 'head-on' homodimer arrangement. In contrast, the structure of the Sema6A-PlxnA2 signalling complex revealed a 2:2 heterotetramer in which the two PlxnA2 monomers dissociated from one another and docked onto the top face of the Sema6A homodimer using the same interface as the head-on homodimer, indicating that plexins undergo 'partner exchange'. Cell-based activity measurements using mutant ligands/receptors confirmed that the Sema6A face-to-face dimer arrangement is physiologically relevant and is maintained throughout signalling events. Thus, homodimer-to-heterodimer transitions of cell-surface plexin that result in a specific orientation of its molecular axis relative to the membrane may constitute the structural mechanism by which the ligand-binding 'signal' is transmitted to the cytoplasmic region, inducing GAP domain rearrangements and activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nogi, Terukazu -- Yasui, Norihisa -- Mihara, Emiko -- Matsunaga, Yukiko -- Noda, Masanori -- Yamashita, Naoya -- Toyofuku, Toshihiko -- Uchiyama, Susumu -- Goshima, Yoshio -- Kumanogoh, Atsushi -- Takagi, Junichi -- England -- Nature. 2010 Oct 28;467(7319):1123-7. doi: 10.1038/nature09473. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881961" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Ligands ; Mice ; Models, Molecular ; Molecular Sequence Data ; Nerve Tissue Proteins/*chemistry/genetics/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Receptors, Cell Surface/*chemistry/genetics/*metabolism ; Semaphorins/*chemistry/genetics/*metabolism ; *Signal Transduction ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2010-06-04
    Description: Plants can defend themselves against a wide array of enemies, from microbes to large animals, yet there is great variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack. A second explanation comes from an evolutionary 'tug of war', in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best explained by costs incurred from constitutive defences in a pest-free environment. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6), underpins marked pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its marked impact on growth.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055268/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Todesco, Marco -- Balasubramanian, Sureshkumar -- Hu, Tina T -- Traw, M Brian -- Horton, Matthew -- Epple, Petra -- Kuhns, Christine -- Sureshkumar, Sridevi -- Schwartz, Christopher -- Lanz, Christa -- Laitinen, Roosa A E -- Huang, Yu -- Chory, Joanne -- Lipka, Volker -- Borevitz, Justin O -- Dangl, Jeffery L -- Bergelson, Joy -- Nordborg, Magnus -- Weigel, Detlef -- F23-GM65032-1/GM/NIGMS NIH HHS/ -- GM057171/GM/NIGMS NIH HHS/ -- GM057994/GM/NIGMS NIH HHS/ -- GM073822/GM/NIGMS NIH HHS/ -- GM62932/GM/NIGMS NIH HHS/ -- R01 GM062932/GM/NIGMS NIH HHS/ -- R01 GM062932-08/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jun 3;465(7298):632-6. doi: 10.1038/nature09083.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tubingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20520716" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Ankyrins/genetics/metabolism ; Arabidopsis/*genetics/growth & development/metabolism/microbiology ; Arabidopsis Proteins/genetics/metabolism ; Biomass ; Gene Expression Regulation, Plant ; Genes, Plant ; Genetic Fitness/*genetics ; Genetic Variation/*genetics ; Genome-Wide Association Study ; Molecular Sequence Data ; Phenotype ; Plant Diseases/genetics/microbiology ; Plant Leaves/anatomy & histology/genetics/growth & development/parasitology ; Quantitative Trait Loci
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2010-03-17
    Description: The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479502/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479502/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Jarrod A -- Kirkness, Ewen F -- Simakov, Oleg -- Hampson, Steven E -- Mitros, Therese -- Weinmaier, Thomas -- Rattei, Thomas -- Balasubramanian, Prakash G -- Borman, Jon -- Busam, Dana -- Disbennett, Kathryn -- Pfannkoch, Cynthia -- Sumin, Nadezhda -- Sutton, Granger G -- Viswanathan, Lakshmi Devi -- Walenz, Brian -- Goodstein, David M -- Hellsten, Uffe -- Kawashima, Takeshi -- Prochnik, Simon E -- Putnam, Nicholas H -- Shu, Shengquiang -- Blumberg, Bruce -- Dana, Catherine E -- Gee, Lydia -- Kibler, Dennis F -- Law, Lee -- Lindgens, Dirk -- Martinez, Daniel E -- Peng, Jisong -- Wigge, Philip A -- Bertulat, Bianca -- Guder, Corina -- Nakamura, Yukio -- Ozbek, Suat -- Watanabe, Hiroshi -- Khalturin, Konstantin -- Hemmrich, Georg -- Franke, Andre -- Augustin, Rene -- Fraune, Sebastian -- Hayakawa, Eisuke -- Hayakawa, Shiho -- Hirose, Mamiko -- Hwang, Jung Shan -- Ikeo, Kazuho -- Nishimiya-Fujisawa, Chiemi -- Ogura, Atshushi -- Takahashi, Toshio -- Steinmetz, Patrick R H -- Zhang, Xiaoming -- Aufschnaiter, Roland -- Eder, Marie-Kristin -- Gorny, Anne-Kathrin -- Salvenmoser, Willi -- Heimberg, Alysha M -- Wheeler, Benjamin M -- Peterson, Kevin J -- Bottger, Angelika -- Tischler, Patrick -- Wolf, Alexander -- Gojobori, Takashi -- Remington, Karin A -- Strausberg, Robert L -- Venter, J Craig -- Technau, Ulrich -- Hobmayer, Bert -- Bosch, Thomas C G -- Holstein, Thomas W -- Fujisawa, Toshitaka -- Bode, Hans R -- David, Charles N -- Rokhsar, Daniel S -- Steele, Robert E -- P 21108/Austrian Science Fund FWF/Austria -- R24 RR015088/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):592-6. doi: 10.1038/nature08830. Epub 2010 Mar 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20228792" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/genetics ; Comamonadaceae/genetics ; DNA Transposable Elements/genetics ; Gene Transfer, Horizontal/genetics ; Genome/*genetics ; Genome, Bacterial/genetics ; Hydra/*genetics/microbiology/ultrastructure ; Molecular Sequence Data ; Neuromuscular Junction/ultrastructure
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2010-01-15
    Description: The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653425/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653425/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Pyntikova, Tatyana -- Graves, Tina A -- van Daalen, Saskia K M -- Minx, Patrick J -- Fulton, Robert S -- McGrath, Sean D -- Locke, Devin P -- Friedman, Cynthia -- Trask, Barbara J -- Mardis, Elaine R -- Warren, Wesley C -- Repping, Sjoerd -- Rozen, Steve -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Jan 28;463(7280):536-9. doi: 10.1038/nature08700. Epub 2010 Jan 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20072128" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Pair 21/genetics ; Chromosomes, Human, Y/*genetics ; DNA/chemistry/genetics ; Genes/*genetics ; Humans ; Male ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Pan troglodytes/*genetics ; Sequence Homology, Nucleic Acid ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2010-04-07
    Description: Targeting of proteins to appropriate subcellular compartments is a crucial process in all living cells. Secretory and membrane proteins usually contain an amino-terminal signal peptide, which is recognized by the signal recognition particle (SRP) when nascent polypeptide chains emerge from the ribosome. The SRP-ribosome nascent chain complex is then targeted through its GTP-dependent interaction with SRP receptor to the protein-conducting channel on endoplasmic reticulum membrane in eukaryotes or plasma membrane in bacteria. A universally conserved component of SRP (refs 1, 2), SRP54 or its bacterial homologue, fifty-four homologue (Ffh), binds the signal peptides, which have a highly divergent sequence divisible into a positively charged n-region, an h-region commonly containing 8-20 hydrophobic residues and a polar c-region. No structure has been reported that exemplifies SRP54 binding of any signal sequence. Here we have produced a fusion protein between Sulfolobus solfataricus SRP54 (Ffh) and a signal peptide connected via a flexible linker. This fusion protein oligomerizes in solution through interaction between the SRP54 and signal peptide moieties belonging to different chains, and it is functional, as demonstrated by its ability to bind SRP RNA and SRP receptor FtsY. We present the crystal structure at 3.5 A resolution of an SRP54-signal peptide complex in the dimer, which reveals how a signal sequence is recognized by SRP54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2897128/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Janda, Claudia Y -- Li, Jade -- Oubridge, Chris -- Hernandez, Helena -- Robinson, Carol V -- Nagai, Kiyoshi -- MC_U105184330/Medical Research Council/United Kingdom -- U.1051.04.016(78933)/Medical Research Council/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2010 May 27;465(7297):507-10. doi: 10.1038/nature08870. Epub 2010 Apr 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20364120" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Proteins/metabolism ; Crystallography, X-Ray ; Mass Spectrometry ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Multimerization ; Protein Sorting Signals/*physiology ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/metabolism ; Receptors, Virus/metabolism ; Recombinant Fusion Proteins/chemistry/metabolism ; Signal Recognition Particle/*chemistry/*metabolism ; Structure-Activity Relationship ; Sulfolobus solfataricus/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2010-02-23
    Description: Nitrogen (N(2))-fixing marine cyanobacteria are an important source of fixed inorganic nitrogen that supports oceanic primary productivity and carbon dioxide removal from the atmosphere. A globally distributed, periodically abundant N(2)-fixing marine cyanobacterium, UCYN-A, was recently found to lack the oxygen-producing photosystem II complex of the photosynthetic apparatus, indicating a novel metabolism, but remains uncultivated. Here we show, from metabolic reconstructions inferred from the assembly of the complete UCYN-A genome using massively parallel pyrosequencing of paired-end reads, that UCYN-A has a photofermentative metabolism and is dependent on other organisms for essential compounds. We found that UCYN-A lacks a number of major metabolic pathways including the tricarboxylic acid cycle, but retains sufficient electron transport capacity to generate energy and reducing power from light. Unexpectedly, UCYN-A has a reduced genome (1.44 megabases) that is structurally similar to many chloroplasts and some bacteria, in that it contains inverted repeats of ribosomal RNA operons. The lack of biosynthetic pathways for several amino acids and purines suggests that this organism depends on other organisms, either in close association or in symbiosis, for critical nutrients. However, size fractionation experiments using natural populations have so far not provided evidence of a symbiotic association with another microorganism. The UCYN-A cyanobacterium is a paradox in evolution and adaptation to the marine environment, and is an example of the tight metabolic coupling between microorganisms in oligotrophic oceanic microbial communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tripp, H James -- Bench, Shellie R -- Turk, Kendra A -- Foster, Rachel A -- Desany, Brian A -- Niazi, Faheem -- Affourtit, Jason P -- Zehr, Jonathan P -- England -- Nature. 2010 Mar 4;464(7285):90-4. doi: 10.1038/nature08786. Epub 2010 Feb 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean Sciences Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20173737" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon/metabolism ; Chromosomes, Bacterial/genetics ; Cyanobacteria/classification/cytology/*genetics/*metabolism ; Electron Transport ; Genome, Bacterial/*genetics ; Genomics ; Marine Biology ; Molecular Sequence Data ; Nitrogen/*metabolism ; Nitrogen Fixation/genetics/*physiology ; Oceans and Seas ; Oxidoreductases/genetics ; Seawater/*microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2010-05-21
    Description: Calcium-regulated exocytosis is a ubiquitous process in eukaryotes, whereby secretory vesicles fuse with the plasma membrane and release their contents in response to an intracellular calcium surge. This process regulates various cellular functions such as plasma membrane repair in plants and animals, the discharge of defensive spikes in Paramecium, and the secretion of insulin from pancreatic cells, immune modulators from lymphocytes, and chemical transmitters from neurons. In animal cells, serine/threonine kinases including cAMP-dependent protein kinase, protein kinase C and calmodulin kinases have been implicated in calcium-signal transduction leading to regulated secretion. Although plants and protozoa also regulate secretion by means of intracellular calcium, the method by which these signals are relayed has not been explained. Here we show that the Toxoplasma gondii calcium-dependent protein kinase 1 (TgCDPK1) is an essential regulator of calcium-dependent exocytosis in this opportunistic human pathogen. Conditional suppression of TgCDPK1 revealed that it controls calcium-dependent secretion of specialized organelles called micronemes, resulting in a block of essential phenotypes including parasite motility, host-cell invasion, and egress. These phenotypes were recapitulated by using a chemical biology approach in which pyrazolopyrimidine-derived compounds specifically inhibited TgCDPK1 and disrupted the parasite's life cycle at stages dependent on microneme secretion. Inhibition was specific to TgCDPK1, because expression of a resistant mutant kinase reversed sensitivity to the inhibitor. TgCDPK1 is conserved among apicomplexans and belongs to a family of kinases shared with plants and ciliates, suggesting that related CDPKs may have a function in calcium-regulated secretion in other organisms. Because this kinase family is absent from mammalian hosts, it represents a validated target that may be exploitable for chemotherapy against T. gondii and related apicomplexans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874977/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lourido, Sebastian -- Shuman, Joel -- Zhang, Chao -- Shokat, Kevan M -- Hui, Raymond -- Sibley, L David -- R01 AI034036/AI/NIAID NIH HHS/ -- R01 AI034036-17/AI/NIAID NIH HHS/ -- England -- Nature. 2010 May 20;465(7296):359-62. doi: 10.1038/nature09022.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, Missouri 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485436" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Cells, Cultured ; *Exocytosis ; Fibroblasts/parasitology ; Foreskin ; Gene Knockout Techniques ; Host-Pathogen Interactions/physiology ; Humans ; Male ; Molecular Sequence Data ; Organelles/metabolism ; Phenotype ; Protein Kinases/deficiency/genetics/*metabolism ; Protein Phosphatase 1/chemistry/metabolism ; Toxoplasma/*cytology/*enzymology/pathogenicity/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2010-10-29
    Description: The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 A resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3548404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Yu-Hang -- Hu, Lei -- Punta, Marco -- Bruni, Renato -- Hillerich, Brandan -- Kloss, Brian -- Rost, Burkhard -- Love, James -- Siegelbaum, Steven A -- Hendrickson, Wayne A -- R01 GM034102/GM/NIGMS NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54 GM095315/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 28;467(7319):1074-80. doi: 10.1038/nature09487.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981093" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Arabidopsis/genetics/metabolism ; Arabidopsis Proteins/*chemistry ; Bacterial Proteins/*chemistry/genetics/metabolism ; Crystallography, X-Ray ; Electric Conductivity ; Haemophilus influenzae/*chemistry/genetics ; Ion Channel Gating ; Membrane Proteins/*chemistry ; Models, Molecular ; Molecular Sequence Data ; Oocytes/metabolism ; Phenylalanine/chemistry/metabolism ; Plant Stomata/*metabolism ; Static Electricity ; *Structural Homology, Protein ; Substrate Specificity ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2010-08-27
    Description: Successful partition of replicated genomes at cell division requires chromosome attachment to opposite poles of mitotic spindle (bi-orientation). Any defects in this regulation bring about chromosomal instability, which may accelerate tumour progression in humans. To achieve chromosome bi-orientation at prometaphase, the chromosomal passenger complex (CPC), composed of catalytic kinase Aurora B and regulatory components (INCENP, Survivin and Borealin), must be localized to centromeres to phosphorylate kinetochore substrates. Although the CPC dynamically changes the subcellular localization, the regulation of centromere targeting is largely unknown. Here we isolated a fission yeast cyclin B mutant defective specifically in chromosome bi-orientation. Accordingly, we identified Cdk1 (also known as Cdc2)-cyclin-B-dependent phosphorylation of Survivin. Preventing Survivin phosphorylation impairs centromere CPC targeting as well as chromosome bi-orientation, whereas phosphomimetic Survivin suppresses the bi-orientation defect in the cyclin B mutant. Survivin phosphorylation promotes direct binding with shugoshin, which we now define as a conserved centromeric adaptor of the CPC. In human cells, the phosphorylation of Borealin has a comparable role. Thus, our study resolves the conserved mechanisms of CPC targeting to centromeres, highlighting a key role of Cdk1-cyclin B in chromosome bi-orientation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukahara, Tatsuya -- Tanno, Yuji -- Watanabe, Yoshinori -- England -- Nature. 2010 Oct 7;467(7316):719-23. doi: 10.1038/nature09390. Epub 2010 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739936" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Aurora Kinase B ; Aurora Kinases ; CDC2 Protein Kinase/*metabolism ; Carrier Proteins/genetics/metabolism ; Cell Cycle Proteins/genetics/metabolism ; Cell Line ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/metabolism ; Chromosomes, Fungal/*metabolism ; Chromosomes, Human/*metabolism ; Cyclin B/genetics/metabolism ; Humans ; Inhibitor of Apoptosis Proteins ; Microtubule-Associated Proteins/metabolism ; Molecular Sequence Data ; Multiprotein Complexes/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Schizosaccharomyces/cytology/genetics/metabolism ; Schizosaccharomyces pombe Proteins/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2010-02-19
    Description: Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5' end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of approximately 60 small RNAs including the epsilon-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sharma, Cynthia M -- Hoffmann, Steve -- Darfeuille, Fabien -- Reignier, Jeremy -- Findeiss, Sven -- Sittka, Alexandra -- Chabas, Sandrine -- Reiche, Kristin -- Hackermuller, Jorg -- Reinhardt, Richard -- Stadler, Peter F -- Vogel, Jorg -- England -- Nature. 2010 Mar 11;464(7286):250-5. doi: 10.1038/nature08756. Epub 2010 Feb 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Infection Biology, RNA Biology Group, D-10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164839" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Amino Acid Sequence ; Base Sequence ; Cells, Cultured ; *Gene Expression Profiling ; Genome, Bacterial/*genetics ; Helicobacter Infections/*microbiology ; Helicobacter pylori/*genetics ; Humans ; Molecular Sequence Data ; Nucleic Acid Conformation ; Operon/genetics ; RNA, Bacterial/chemistry/*genetics/metabolism ; RNA, Messenger/genetics ; RNA, Untranslated ; Sequence Alignment ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2010-05-18
    Description: Staphylococcal superantigen-carrying pathogenicity islands (SaPIs) are discrete, chromosomally integrated units of approximately 15 kilobases that are induced by helper phages to excise and replicate. SaPI DNA is then efficiently encapsidated in phage-like infectious particles, leading to extremely high frequencies of intra- as well as intergeneric transfer. In the absence of helper phage lytic growth, the island is maintained in a quiescent prophage-like state by a global repressor, Stl, which controls expression of most of the SaPI genes. Here we show that SaPI derepression is effected by a specific, non-essential phage protein that binds to Stl, disrupting the Stl-DNA complex and thereby initiating the excision-replication-packaging cycle of the island. Because SaPIs require phage proteins to be packaged, this strategy assures that SaPIs will be transferred once induced. Several different SaPIs are induced by helper phage 80alpha and, in each case, the SaPI commandeers a different non-essential phage protein for its derepression. The highly specific interactions between different SaPI repressors and helper-phage-encoded antirepressors represent a remarkable evolutionary adaptation involved in pathogenicity island mobilization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518041/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3518041/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tormo-Mas, Maria Angeles -- Mir, Ignacio -- Shrestha, Archana -- Tallent, Sandra M -- Campoy, Susana -- Lasa, Inigo -- Barbe, Jordi -- Novick, Richard P -- Christie, Gail E -- Penades, Jose R -- R01AI022159-23A2/AI/NIAID NIH HHS/ -- R21 AI067654/AI/NIAID NIH HHS/ -- R21 AI067654-01A1/AI/NIAID NIH HHS/ -- R21AI067654/AI/NIAID NIH HHS/ -- England -- Nature. 2010 Jun 10;465(7299):779-82. doi: 10.1038/nature09065. Epub 2010 May 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centro de Investigacion y Tecnologia Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo. 187, Segorbe, Castellon 12400, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20473284" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; DNA/biosynthesis/genetics ; DNA Replication ; Genomic Islands/*genetics ; Helper Viruses/*enzymology/genetics/metabolism/physiology ; Lysogeny/physiology ; Molecular Sequence Data ; Prophages/metabolism/physiology ; Pyrophosphatases/chemistry/genetics/metabolism ; Recombination, Genetic/genetics ; Repressor Proteins/*antagonists & inhibitors/genetics/metabolism ; Shock, Septic ; Staphylococcus Phages/*enzymology/genetics/metabolism/physiology ; Staphylococcus aureus/*genetics/pathogenicity/virology ; Superantigens/genetics ; Up-Regulation/*genetics ; Viral Proteins/chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2010-04-09
    Description: The complex, geometric colour patterns of many animal bodies have important roles in behaviour and ecology. The generation of certain patterns has been the subject of considerable theoretical exploration, however, very little is known about the actual mechanisms underlying colour pattern formation or evolution. Here we have investigated the generation and evolution of the complex, spotted wing pattern of Drosophila guttifera. We show that wing spots are induced by the Wingless morphogen, which is expressed at many discrete sites that are specified by pre-existing positional information that governs the development of wing structures. Furthermore, we demonstrate that the elaborate spot pattern evolved from simpler schemes by co-option of Wingless expression at new sites. This example of a complex design developing and evolving by the layering of new patterns on pre-patterns is likely to be a general theme in other animals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Werner, Thomas -- Koshikawa, Shigeyuki -- Williams, Thomas M -- Carroll, Sean B -- GM076935/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Apr 22;464(7292):1143-8. doi: 10.1038/nature08896. Epub 2010 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, 1525 Linden Drive, Madison, Wisconsin 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376004" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Color ; Drosophila/genetics/*physiology ; Drosophila Proteins/genetics/*metabolism ; Enhancer Elements, Genetic/genetics ; Gene Expression Regulation, Developmental/genetics ; Molecular Sequence Data ; Morphogenesis/genetics/physiology ; Pigmentation/genetics/*physiology ; Wings, Animal/anatomy & histology/*physiology ; Wnt1 Protein/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2014-10-09
    Description: The human immunodeficiency virus type 1 (HIV-1) envelope (Env) spike, comprising three gp120 and three gp41 subunits, is a conformational machine that facilitates HIV-1 entry by rearranging from a mature unliganded state, through receptor-bound intermediates, to a post-fusion state. As the sole viral antigen on the HIV-1 virion surface, Env is both the target of neutralizing antibodies and a focus of vaccine efforts. Here we report the structure at 3.5 A resolution for an HIV-1 Env trimer captured in a mature closed state by antibodies PGT122 and 35O22. This structure reveals the pre-fusion conformation of gp41, indicates rearrangements needed for fusion activation, and defines parameters of immune evasion and immune recognition. Pre-fusion gp41 encircles amino- and carboxy-terminal strands of gp120 with four helices that form a membrane-proximal collar, fastened by insertion of a fusion peptide-proximal methionine into a gp41-tryptophan clasp. Spike rearrangements required for entry involve opening the clasp and expelling the termini. N-linked glycosylation and sequence-variable regions cover the pre-fusion closed spike; we used chronic cohorts to map the prevalence and location of effective HIV-1-neutralizing responses, which were distinguished by their recognition of N-linked glycan and tolerance for epitope-sequence variation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4348022/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pancera, Marie -- Zhou, Tongqing -- Druz, Aliaksandr -- Georgiev, Ivelin S -- Soto, Cinque -- Gorman, Jason -- Huang, Jinghe -- Acharya, Priyamvada -- Chuang, Gwo-Yu -- Ofek, Gilad -- Stewart-Jones, Guillaume B E -- Stuckey, Jonathan -- Bailer, Robert T -- Joyce, M Gordon -- Louder, Mark K -- Tumba, Nancy -- Yang, Yongping -- Zhang, Baoshan -- Cohen, Myron S -- Haynes, Barton F -- Mascola, John R -- Morris, Lynn -- Munro, James B -- Blanchard, Scott C -- Mothes, Walther -- Connors, Mark -- Kwong, Peter D -- AI0678501/AI/NIAID NIH HHS/ -- AI100645/AI/NIAID NIH HHS/ -- P01 GM056550/GM/NIGMS NIH HHS/ -- P01-GM56550/GM/NIGMS NIH HHS/ -- P30 AI050410/AI/NIAID NIH HHS/ -- R01 GM098859/GM/NIGMS NIH HHS/ -- R01-GM098859/GM/NIGMS NIH HHS/ -- R21 AI100696/AI/NIAID NIH HHS/ -- R21-AI100696/AI/NIAID NIH HHS/ -- UL1 TR000142/TR/NCATS NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- ZIA AI005023-13/Intramural NIH HHS/ -- ZIA AI005024-13/Intramural NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):455-61. doi: 10.1038/nature13808. Epub 2014 Oct 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ; Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa. ; Departments of Medicine, Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA. ; Duke University Human Vaccine Institute, Departments of Medicine, Surgery, Pediatrics and Immunology, Duke University School of Medicine, and the Center for HIV/AIDS Vaccine Immunology-Immunogen Discovery at Duke University, Durham, North Carolina 27710, USA. ; 1] Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Sandringham, Johannesburg 2131, South Africa [2] University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa [3] Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa. ; Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536, USA. ; Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25296255" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Sequence ; Antibodies, Neutralizing/immunology ; Cohort Studies ; Crystallography, X-Ray ; Genetic Variation ; Glycosylation ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/*immunology ; HIV Envelope Protein gp41/*chemistry/genetics/*immunology ; HIV Infections/immunology ; Humans ; Immune Evasion ; Membrane Fusion ; Models, Molecular ; Molecular Sequence Data ; Polysaccharides/chemistry/immunology ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Subunits/chemistry/genetics/immunology ; Structural Homology, Protein ; Virus Internalization
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2014-09-16
    Description: A defining feature governing head patterning of jawed vertebrates is a highly conserved gene regulatory network that integrates hindbrain segmentation with segmentally restricted domains of Hox gene expression. Although non-vertebrate chordates display nested domains of axial Hox expression, they lack hindbrain segmentation. The sea lamprey, a jawless fish, can provide unique insights into vertebrate origins owing to its phylogenetic position at the base of the vertebrate tree. It has been suggested that lamprey may represent an intermediate state where nested Hox expression has not been coupled to the process of hindbrain segmentation. However, little is known about the regulatory network underlying Hox expression in lamprey or its relationship to hindbrain segmentation. Here, using a novel tool that allows cross-species comparisons of regulatory elements between jawed and jawless vertebrates, we report deep conservation of both upstream regulators and segmental activity of enhancer elements across these distant species. Regulatory regions from diverse gnathostomes drive segmental reporter expression in the lamprey hindbrain and require the same transcriptional inputs (for example, Kreisler (also known as Mafba), Krox20 (also known as Egr2a)) in both lamprey and zebrafish. We find that lamprey hox genes display dynamic segmentally restricted domains of expression; we also isolated a conserved exonic hox2 enhancer from lamprey that drives segmental expression in rhombomeres 2 and 4. Our results show that coupling of Hox gene expression to segmentation of the hindbrain is an ancient trait with origin at the base of vertebrates that probably led to the formation of rhombomeric compartments with an underlying Hox code.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parker, Hugo J -- Bronner, Marianne E -- Krumlauf, Robb -- R01 DE017911/DE/NIDCR NIH HHS/ -- R01 NS086907/NS/NINDS NIH HHS/ -- R01DE017911/DE/NIDCR NIH HHS/ -- R01NS086907/NS/NINDS NIH HHS/ -- England -- Nature. 2014 Oct 23;514(7523):490-3. doi: 10.1038/nature13723. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. ; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. ; 1] Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA [2] Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Body Patterning/genetics ; Conserved Sequence/*genetics ; Enhancer Elements, Genetic/genetics ; *Evolution, Molecular ; Gene Expression Regulation, Developmental ; Gene Regulatory Networks/*genetics ; Genes, Homeobox/*genetics ; Lampreys/embryology/genetics ; Molecular Sequence Data ; Phylogeny ; Rhombencephalon/*embryology/*metabolism ; Vertebrates/*embryology/genetics ; Zebrafish/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2010-02-12
    Description: Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and sorghum genomes shows a precise history of genome evolution across a broad diversity of the grasses, and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat. The high-quality genome sequence, coupled with ease of cultivation and transformation, small size and rapid life cycle, will help Brachypodium reach its potential as an important model system for developing new energy and food crops.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉International Brachypodium Initiative -- Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2010 Feb 11;463(7282):763-8. doi: 10.1038/nature08747.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉USDA-ARS Western Regional Research Center, Albany, California 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20148030" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosomes, Plant/genetics ; Crops, Agricultural/genetics ; DNA Transposable Elements/genetics ; Evolution, Molecular ; Gene Fusion/genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Molecular Sequence Data ; Oryza/genetics ; Poaceae/classification/*genetics ; RNA, Plant/analysis/genetics ; Sequence Analysis, DNA ; Sorghum/genetics ; Synteny/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2015-07-02
    Description: Multicellularity is often considered a prerequisite for morphological complexity, as seen in the camera-type eyes found in several groups of animals. A notable exception exists in single-celled eukaryotes called dinoflagellates, some of which have an eye-like 'ocelloid' consisting of subcellular analogues to a cornea, lens, iris, and retina. These planktonic cells are uncultivated and rarely encountered in environmental samples, obscuring the function and evolutionary origin of the ocelloid. Here we show, using a combination of electron microscopy, tomography, isolated-organelle genomics, and single-cell genomics, that ocelloids are built from pre-existing organelles, including a cornea-like layer made of mitochondria and a retinal body made of anastomosing plastids. We find that the retinal body forms the central core of a network of peridinin-type plastids, which in dinoflagellates and their relatives originated through an ancient endosymbiosis with a red alga. As such, the ocelloid is a chimaeric structure, incorporating organelles with different endosymbiotic histories. The anatomical complexity of single-celled organisms may be limited by the components available for differentiation, but the ocelloid shows that pre-existing organelles can be assembled into a structure so complex that it was initially mistaken for a multicellular eye. Although mitochondria and plastids are acknowledged chiefly for their metabolic roles, they can also be building blocks for greater structural complexity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gavelis, Gregory S -- Hayakawa, Shiho -- White, Richard A 3rd -- Gojobori, Takashi -- Suttle, Curtis A -- Keeling, Patrick J -- Leander, Brian S -- England -- Nature. 2015 Jul 9;523(7559):204-7. doi: 10.1038/nature14593. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. ; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. ; 1] Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan [2] Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia. ; 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [4] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. ; 1] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada. ; 1] Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [2] Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada [3] Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131935" target="_blank"〉PubMed〈/a〉
    Keywords: Dinoflagellida/*genetics/physiology/*ultrastructure ; Genome, Protozoan/genetics ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Mitochondria/metabolism/ultrastructure ; Molecular Sequence Data ; Plastids/metabolism/ultrastructure ; Protozoan Proteins/genetics ; Rhodophyta/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2010-07-03
    Description: Various social behaviours in mice are regulated by chemical signals called pheromones that act through the vomeronasal system. Exocrine gland-secreting peptide 1 (ESP1) is a 7-kDa peptide that is released into male tear fluids and stimulates vomeronasal sensory neurons in female mice. Here, we describe the molecular and neural mechanisms that are involved in the decoding of ESP1 signals in the vomeronasal system, which leads to behavioural output in female mice. ESP1 is recognized by a specific vomeronasal receptor, V2Rp5, and the ligand-receptor interaction results in sex-specific signal transmission to the amygdaloid and hypothalamic nuclei via the accessory olfactory bulb. Consequently, ESP1 enhances female sexual receptive behaviour upon male mounting (lordosis), allowing successful copulation. In V2Rp5-deficient mice, ESP1 induces neither neural activation nor sexual behaviour. These findings show that ESP1 is a crucial male pheromone that regulates female reproductive behaviour through a specific receptor in the mouse vomeronasal system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haga, Sachiko -- Hattori, Tatsuya -- Sato, Toru -- Sato, Koji -- Matsuda, Soichiro -- Kobayakawa, Reiko -- Sakano, Hitoshi -- Yoshihara, Yoshihiro -- Kikusui, Takefumi -- Touhara, Kazushige -- England -- Nature. 2010 Jul 1;466(7302):118-22. doi: 10.1038/nature09142.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596023" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/cytology/metabolism ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Neurons/metabolism ; Pheromones/*metabolism ; Proteins/*metabolism ; Proto-Oncogene Proteins c-fos/metabolism ; Receptors, Odorant/deficiency/genetics/*metabolism ; Receptors, Pheromone/deficiency/genetics/*metabolism ; Sexual Behavior, Animal/*physiology ; TRPC Cation Channels/deficiency ; Vomeronasal Organ/cytology/innervation/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2015-07-15
    Description: Surface polysaccharides are important for bacterial interactions with multicellular organisms, and some are virulence factors in pathogens. In the legume-rhizobium symbiosis, bacterial exopolysaccharides (EPS) are essential for the development of infected root nodules. We have identified a gene in Lotus japonicus, Epr3, encoding a receptor-like kinase that controls this infection. We show that epr3 mutants are defective in perception of purified EPS, and that EPR3 binds EPS directly and distinguishes compatible and incompatible EPS in bacterial competition studies. Expression of Epr3 in epidermal cells within the susceptible root zone shows that the protein is involved in bacterial entry, while rhizobial and plant mutant studies suggest that Epr3 regulates bacterial passage through the plant's epidermal cell layer. Finally, we show that Epr3 expression is inducible and dependent on host perception of bacterial nodulation (Nod) factors. Plant-bacterial compatibility and bacterial access to legume roots is thus regulated by a two-stage mechanism involving sequential receptor-mediated recognition of Nod factor and EPS signals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kawaharada, Y -- Kelly, S -- Nielsen, M Wibroe -- Hjuler, C T -- Gysel, K -- Muszynski, A -- Carlson, R W -- Thygesen, M B -- Sandal, N -- Asmussen, M H -- Vinther, M -- Andersen, S U -- Krusell, L -- Thirup, S -- Jensen, K J -- Ronson, C W -- Blaise, M -- Radutoiu, S -- Stougaard, J -- England -- Nature. 2015 Jul 16;523(7560):308-12. doi: 10.1038/nature14611. Epub 2015 Jul 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000 C, Denmark [3] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Chemistry, University of Copenhagen, Frederiksberg 1871 C, Denmark. ; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA. ; 1] Centre for Carbohydrate Recognition and Signalling. Aarhus University, Aarhus 8000 C, Denmark [2] Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26153863" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Carbohydrate Sequence ; Lipopolysaccharides/chemistry/*metabolism ; Lotus/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation/genetics ; Phenotype ; Plant Epidermis/metabolism/microbiology ; Plant Proteins/chemistry/genetics/*metabolism ; Plant Root Nodulation ; Protein Kinases/chemistry/genetics/metabolism ; Protein Structure, Tertiary ; Receptors, Cell Surface/chemistry/genetics/*metabolism ; Rhizobium/*metabolism ; Root Nodules, Plant/metabolism/microbiology ; Signal Transduction ; Species Specificity ; Suppression, Genetic/genetics ; *Symbiosis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2015-03-25
    Description: Wing polyphenism is an evolutionarily successful feature found in a wide range of insects. Long-winged morphs can fly, which allows them to escape adverse habitats and track changing resources, whereas short-winged morphs are flightless, but usually possess higher fecundity than the winged morphs. Studies on aphids, crickets and planthoppers have revealed that alternative wing morphs develop in response to various environmental cues, and that the response to these cues may be mediated by developmental hormones, although research in this area has yielded equivocal and conflicting results about exactly which hormones are involved. As it stands, the molecular mechanism underlying wing morph determination in insects has remained elusive. Here we show that two insulin receptors in the migratory brown planthopper Nilaparvata lugens, InR1 and InR2, have opposing roles in controlling long wing versus short wing development by regulating the activity of the forkhead transcription factor Foxo. InR1, acting via the phosphatidylinositol-3-OH kinase (PI(3)K)-protein kinase B (Akt) signalling cascade, leads to the long-winged morph if active and the short-winged morph if inactive. InR2, by contrast, functions as a negative regulator of the InR1-PI(3)K-Akt pathway: suppression of InR2 results in development of the long-winged morph. The brain-secreted ligand Ilp3 triggers development of long-winged morphs. Our findings provide the first evidence of a molecular basis for the regulation of wing polyphenism in insects, and they are also the first demonstration--to our knowledge--of binary control over alternative developmental outcomes, and thus deepen our understanding of the development and evolution of phenotypic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xu, Hai-Jun -- Xue, Jian -- Lu, Bo -- Zhang, Xue-Chao -- Zhuo, Ji-Chong -- He, Shu-Fang -- Ma, Xiao-Fang -- Jiang, Ya-Qin -- Fan, Hai-Wei -- Xu, Ji-Yu -- Ye, Yu-Xuan -- Pan, Peng-Lu -- Li, Qiao -- Bao, Yan-Yuan -- Nijhout, H Frederik -- Zhang, Chuan-Xi -- England -- Nature. 2015 Mar 26;519(7544):464-7. doi: 10.1038/nature14286. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. ; Department of Biology, Duke University, Durham, North Carolina 27708, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799997" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; Forkhead Transcription Factors/deficiency/metabolism ; Hemiptera/*anatomy & histology/enzymology/genetics/*metabolism ; Insulin/metabolism ; Male ; Molecular Sequence Data ; Phosphatidylinositol 3-Kinases/metabolism ; Proto-Oncogene Proteins c-akt/metabolism ; Receptor, Insulin/deficiency/*metabolism ; Signal Transduction ; Wings, Animal/anatomy & histology/enzymology/*growth & development/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2014-11-20
    Description: Emerging evidence suggests that the ribosome has a regulatory function in directing how the genome is translated in time and space. However, how this regulation is encoded in the messenger RNA sequence remains largely unknown. Here we uncover unique RNA regulons embedded in homeobox (Hox) 5' untranslated regions (UTRs) that confer ribosome-mediated control of gene expression. These structured RNA elements, resembling viral internal ribosome entry sites (IRESs), are found in subsets of Hox mRNAs. They facilitate ribosome recruitment and require the ribosomal protein RPL38 for their activity. Despite numerous layers of Hox gene regulation, these IRES elements are essential for converting Hox transcripts into proteins to pattern the mammalian body plan. This specialized mode of IRES-dependent translation is enabled by an additional regulatory element that we term the translation inhibitory element (TIE), which blocks cap-dependent translation of transcripts. Together, these data uncover a new paradigm for ribosome-mediated control of gene expression and organismal development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353651/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353651/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Shifeng -- Tian, Siqi -- Fujii, Kotaro -- Kladwang, Wipapat -- Das, Rhiju -- Barna, Maria -- 7DP2OD00850902/OD/NIH HHS/ -- DP2 OD008509/OD/NIH HHS/ -- R01 GM102519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 1;517(7532):33-8. doi: 10.1038/nature14010. Epub 2014 Nov 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Developmental Biology, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA [3] Tetrad Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA. ; Department of Biochemistry, Stanford University, Stanford, California 94305, USA. ; 1] Department of Developmental Biology, Stanford University, Stanford, California 94305, USA [2] Department of Genetics, Stanford University, Stanford, California 94305, USA. ; 1] Department of Biochemistry, Stanford University, Stanford, California 94305, USA [2] Department of Physics, Stanford University, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25409156" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/*genetics ; Animals ; Bone and Bones/embryology/metabolism ; Cell Line ; Conserved Sequence ; Evolution, Molecular ; Gene Expression Regulation/*genetics ; Genes, Homeobox/*genetics ; Mice ; Molecular Sequence Data ; Protein Biosynthesis/genetics ; RNA Caps/metabolism ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Ribosomal Proteins/metabolism ; Ribosomes/chemistry/*metabolism ; Substrate Specificity ; Zebrafish/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2015-11-10
    Description: Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF-TF-DNA interactions. This analysis revealed 315 TF-TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF's motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jolma, Arttu -- Yin, Yimeng -- Nitta, Kazuhiro R -- Dave, Kashyap -- Popov, Alexander -- Taipale, Minna -- Enge, Martin -- Kivioja, Teemu -- Morgunova, Ekaterina -- Taipale, Jussi -- England -- Nature. 2015 Nov 19;527(7578):384-8. doi: 10.1038/nature15518. Epub 2015 Nov 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biosciences and Nutrition, Karolinska Institutet, SE 141 83, Sweden. ; European Synchrotron Radiation Facility, 38043 Grenoble, France. ; Genome-Scale Biology Program, University of Helsinki, P.O. Box 63, FI-00014, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26550823" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites/genetics ; Crystallography, X-Ray ; DNA/*genetics/*metabolism ; Gene Expression Regulation/genetics ; Humans ; Molecular Sequence Data ; Nucleotide Motifs/genetics ; Reproducibility of Results ; *Substrate Specificity/genetics ; Transcription Factors/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2015-09-10
    Description: Somaclonal variation arises in plants and animals when differentiated somatic cells are induced into a pluripotent state, but the resulting clones differ from each other and from their parents. In agriculture, somaclonal variation has hindered the micropropagation of elite hybrids and genetically modified crops, but the mechanism responsible remains unknown. The oil palm fruit 'mantled' abnormality is a somaclonal variant arising from tissue culture that drastically reduces yield, and has largely halted efforts to clone elite hybrids for oil production. Widely regarded as an epigenetic phenomenon, 'mantling' has defied explanation, but here we identify the MANTLED locus using epigenome-wide association studies of the African oil palm Elaeis guineensis. DNA hypomethylation of a LINE retrotransposon related to rice Karma, in the intron of the homeotic gene DEFICIENS, is common to all mantled clones and is associated with alternative splicing and premature termination. Dense methylation near the Karma splice site (termed the Good Karma epiallele) predicts normal fruit set, whereas hypomethylation (the Bad Karma epiallele) predicts homeotic transformation, parthenocarpy and marked loss of yield. Loss of Karma methylation and of small RNA in tissue culture contributes to the origin of mantled, while restoration in spontaneous revertants accounts for non-Mendelian inheritance. The ability to predict and cull mantling at the plantlet stage will facilitate the introduction of higher performing clones and optimize environmentally sensitive land resources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ong-Abdullah, Meilina -- Ordway, Jared M -- Jiang, Nan -- Ooi, Siew-Eng -- Kok, Sau-Yee -- Sarpan, Norashikin -- Azimi, Nuraziyan -- Hashim, Ahmad Tarmizi -- Ishak, Zamzuri -- Rosli, Samsul Kamal -- Malike, Fadila Ahmad -- Bakar, Nor Azwani Abu -- Marjuni, Marhalil -- Abdullah, Norziha -- Yaakub, Zulkifli -- Amiruddin, Mohd Din -- Nookiah, Rajanaidu -- Singh, Rajinder -- Low, Eng-Ti Leslie -- Chan, Kuang-Lim -- Azizi, Norazah -- Smith, Steven W -- Bacher, Blaire -- Budiman, Muhammad A -- Van Brunt, Andrew -- Wischmeyer, Corey -- Beil, Melissa -- Hogan, Michael -- Lakey, Nathan -- Lim, Chin-Ching -- Arulandoo, Xaviar -- Wong, Choo-Kien -- Choo, Chin-Nee -- Wong, Wei-Chee -- Kwan, Yen-Yen -- Alwee, Sharifah Shahrul Rabiah Syed -- Sambanthamurthi, Ravigadevi -- Martienssen, Robert A -- R01 GM067014/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):533-7. doi: 10.1038/nature15365. Epub 2015 Sep 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia. ; Orion Genomics, 4041 Forest Park Avenue, St Louis, Missouri 63108, USA. ; United Plantations Berhad, Jendarata Estate, 36009 Teluk Intan, Perak, Malaysia. ; Applied Agricultural Resources Sdn Bhd, No. 11, Jalan Teknologi 3/6, Taman Sains Selangor 1, 47810 Kota Damansara, Petaling Jaya, Selangor, Malaysia. ; FELDA Global Ventures R&D Sdn Bhd, c/o FELDA Biotechnology Centre, PT 23417, Lengkuk Teknologi, 71760 Bandar Enstek, Negeri Sembilan, Malaysia. ; Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26352475" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Alternative Splicing/genetics ; Arecaceae/*genetics/metabolism ; *DNA Methylation ; Epigenesis, Genetic/*genetics ; *Epigenomics ; Fruit/genetics ; Genes, Homeobox/genetics ; Genetic Association Studies ; Genome, Plant/*genetics ; Introns/genetics ; Molecular Sequence Data ; *Phenotype ; Plant Oils/analysis/metabolism ; RNA Splice Sites/genetics ; RNA, Small Interfering/genetics ; Retroelements/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2014-12-24
    Description: The kinetochore is the crucial apparatus regulating chromosome segregation in mitosis and meiosis. Particularly in meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase. Although meiotic kinetochore factors have been identified only in budding and fission yeasts, these molecules and their functions are thought to have diverged earlier. Therefore, a conserved mechanism for meiotic kinetochore regulation remains elusive. Here we have identified in mouse a meiosis-specific kinetochore factor that we termed MEIKIN, which functions in meiosis I but not in meiosis II or mitosis. MEIKIN plays a crucial role in both mono-orientation and centromeric cohesion protection, partly by stabilizing the localization of the cohesin protector shugoshin. These functions are mediated mainly by the activity of Polo-like kinase PLK1, which is enriched to kinetochores in a MEIKIN-dependent manner. Our integrative analysis indicates that the long-awaited key regulator of meiotic kinetochore function is Meikin, which is conserved from yeasts to humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Jihye -- Ishiguro, Kei-ichiro -- Nambu, Aya -- Akiyoshi, Bungo -- Yokobayashi, Shihori -- Kagami, Ayano -- Ishiguro, Tadashi -- Pendas, Alberto M -- Takeda, Naoki -- Sakakibara, Yogo -- Kitajima, Tomoya S -- Tanno, Yuji -- Sakuno, Takeshi -- Watanabe, Yoshinori -- England -- Nature. 2015 Jan 22;517(7535):466-71. doi: 10.1038/nature14097. Epub 2014 Dec 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1Yayoi, Tokyo 113-0032, Japan. ; Instituto de Biologia Molecular y Celular del Cancer (CSIC-USAL), 37007 Salamanca, Spain. ; Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811 Japan. ; Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Cycle Proteins/metabolism ; Centromere/metabolism ; Chromosomal Proteins, Non-Histone/deficiency/genetics/*metabolism ; *Conserved Sequence ; Female ; Humans ; Infertility/genetics/metabolism ; Kinetochores/*metabolism ; Male ; *Meiosis ; Mice ; Molecular Sequence Data ; Protein-Serine-Threonine Kinases/metabolism ; Proto-Oncogene Proteins/metabolism ; Saccharomyces cerevisiae Proteins/metabolism ; Schizosaccharomyces pombe Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2014-12-10
    Description: The widespread reorganization of cellular architecture in mitosis is achieved through extensive protein phosphorylation, driven by the coordinated activation of a mitotic kinase network and repression of counteracting phosphatases. Phosphatase activity must subsequently be restored to promote mitotic exit. Although Cdc14 phosphatase drives this reversal in budding yeast, protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) activities have each been independently linked to mitotic exit control in other eukaryotes. Here we describe a mitotic phosphatase relay in which PP1 reactivation is required for the reactivation of both PP2A-B55 and PP2A-B56 to coordinate mitotic progression and exit in fission yeast. The staged recruitment of PP1 (the Dis2 isoform) to the regulatory subunits of the PP2A-B55 and PP2A-B56 (B55 also known as Pab1; B56 also known as Par1) holoenzymes sequentially activates each phosphatase. The pathway is blocked in early mitosis because the Cdk1-cyclin B kinase (Cdk1 also known as Cdc2) inhibits PP1 activity, but declining cyclin B levels later in mitosis permit PP1 to auto-reactivate. PP1 first reactivates PP2A-B55; this enables PP2A-B55 in turn to promote the reactivation of PP2A-B56 by dephosphorylating a PP1-docking site in PP2A-B56, thereby promoting the recruitment of PP1. PP1 recruitment to human, mitotic PP2A-B56 holoenzymes and the sequences of these conserved PP1-docking motifs suggest that PP1 regulates PP2A-B55 and PP2A-B56 activities in a variety of signalling contexts throughout eukaryotes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4338534/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grallert, Agnes -- Boke, Elvan -- Hagting, Anja -- Hodgson, Ben -- Connolly, Yvonne -- Griffiths, John R -- Smith, Duncan L -- Pines, Jonathon -- Hagan, Iain M -- 092096/Wellcome Trust/United Kingdom -- A13678/Cancer Research UK/United Kingdom -- A16406/Cancer Research UK/United Kingdom -- C147/A16406/Cancer Research UK/United Kingdom -- C29/A13678/Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 1;517(7532):94-8. doi: 10.1038/nature14019. Epub 2014 Dec 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cell Division Group, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. ; The Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN, UK. ; Biological Mass Spectrometry, CRUK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25487150" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; CDC2 Protein Kinase/metabolism ; Chromosome Segregation ; Conserved Sequence ; Cyclin B/metabolism ; Enzyme Activation ; HeLa Cells ; Holoenzymes/metabolism ; Humans ; Isoenzymes/metabolism ; *Mitosis ; Molecular Sequence Data ; Phosphorylation ; Protein Phosphatase 1/*metabolism ; Protein Phosphatase 2/chemistry/*metabolism ; Protein Subunits/chemistry/metabolism ; Schizosaccharomyces/*cytology/*enzymology ; Schizosaccharomyces pombe Proteins/chemistry/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2015-07-23
    Description: The human lens is comprised largely of crystallin proteins assembled into a highly ordered, interactive macro-structure essential for lens transparency and refractive index. Any disruption of intra- or inter-protein interactions will alter this delicate structure, exposing hydrophobic surfaces, with consequent protein aggregation and cataract formation. Cataracts are the most common cause of blindness worldwide, affecting tens of millions of people, and currently the only treatment is surgical removal of cataractous lenses. The precise mechanisms by which lens proteins both prevent aggregation and maintain lens transparency are largely unknown. Lanosterol is an amphipathic molecule enriched in the lens. It is synthesized by lanosterol synthase (LSS) in a key cyclization reaction of a cholesterol synthesis pathway. Here we identify two distinct homozygous LSS missense mutations (W581R and G588S) in two families with extensive congenital cataracts. Both of these mutations affect highly conserved amino acid residues and impair key catalytic functions of LSS. Engineered expression of wild-type, but not mutant, LSS prevents intracellular protein aggregation of various cataract-causing mutant crystallins. Treatment by lanosterol, but not cholesterol, significantly decreased preformed protein aggregates both in vitro and in cell-transfection experiments. We further show that lanosterol treatment could reduce cataract severity and increase transparency in dissected rabbit cataractous lenses in vitro and cataract severity in vivo in dogs. Our study identifies lanosterol as a key molecule in the prevention of lens protein aggregation and points to a novel strategy for cataract prevention and treatment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Ling -- Chen, Xiang-Jun -- Zhu, Jie -- Xi, Yi-Bo -- Yang, Xu -- Hu, Li-Dan -- Ouyang, Hong -- Patel, Sherrina H -- Jin, Xin -- Lin, Danni -- Wu, Frances -- Flagg, Ken -- Cai, Huimin -- Li, Gen -- Cao, Guiqun -- Lin, Ying -- Chen, Daniel -- Wen, Cindy -- Chung, Christopher -- Wang, Yandong -- Qiu, Austin -- Yeh, Emily -- Wang, Wenqiu -- Hu, Xun -- Grob, Seanna -- Abagyan, Ruben -- Su, Zhiguang -- Tjondro, Harry Christianto -- Zhao, Xi-Juan -- Luo, Hongrong -- Hou, Rui -- Perry, J Jefferson P -- Gao, Weiwei -- Kozak, Igor -- Granet, David -- Li, Yingrui -- Sun, Xiaodong -- Wang, Jun -- Zhang, Liangfang -- Liu, Yizhi -- Yan, Yong-Bin -- Zhang, Kang -- England -- Nature. 2015 Jul 30;523(7562):607-11. doi: 10.1038/nature14650. Epub 2015 Jul 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; BGI-Shenzhen, Shenzhen 518083, China. ; 1] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [2] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China. ; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] CapitalBio Genomics Co., Ltd., Dongguan 523808, China. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA. ; Guangzhou KangRui Biological Pharmaceutical Technology Company, Guangzhou 510005, China. ; Department of Biochemistry, University of California Riverside, Riverside, California 92521, USA. ; 1] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [2] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA. ; King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia. ; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China. ; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China. ; 1] Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China [2] State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China [3] Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California San Diego, La Jolla, California 92093, USA [4] Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, USA [5] Veterans Administration Healthcare System, San Diego, California 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26200341" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Amino Acid Sequence ; Amyloid/chemistry/drug effects/metabolism/ultrastructure ; Animals ; Base Sequence ; Cataract/congenital/*drug therapy/genetics/*metabolism/pathology ; Cell Line ; Child ; Crystallins/chemistry/genetics/metabolism/ultrastructure ; Dogs ; Female ; Humans ; Lanosterol/administration & dosage/*pharmacology/*therapeutic use ; Lens, Crystalline/drug effects/metabolism/pathology ; Male ; Models, Molecular ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism/ultrastructure ; Pedigree ; Protein Aggregates/*drug effects ; Protein Aggregation, Pathological/*drug therapy/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2015-11-13
    Description: Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (〉16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉VanBuren, Robert -- Bryant, Doug -- Edger, Patrick P -- Tang, Haibao -- Burgess, Diane -- Challabathula, Dinakar -- Spittle, Kristi -- Hall, Richard -- Gu, Jenny -- Lyons, Eric -- Freeling, Michael -- Bartels, Dorothea -- Ten Hallers, Boudewijn -- Hastie, Alex -- Michael, Todd P -- Mockler, Todd C -- England -- Nature. 2015 Nov 26;527(7579):508-11. doi: 10.1038/nature15714. Epub 2015 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA. ; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA. ; Department of Horticulture, Michigan State University, East Lansing, Michigan 48823, USA. ; iPlant Collaborative, School of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA. ; Center for Genomics and Biotechnology, Haixia Institute of Science and Technology (HIST), Fujian Agriculture and Forestry University, Fuzhou 350002, China. ; IMBIO, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany. ; Pacific Biosciences, Menlo Park, California 94025, USA. ; BioNano Genomics, San Diego, California 92121, USA. ; Ibis Biosciences, Carlsbad, California 92008, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26560029" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics ; Contig Mapping ; Dehydration ; Desiccation ; Droughts ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genomics ; Molecular Sequence Data ; Poaceae/*genetics ; Sequence Analysis, DNA/*methods
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2015-01-22
    Description: Low-molecular-mass thiols in organisms are well known for their redox-relevant role in protection against various endogenous and exogenous stresses. In eukaryotes and Gram-negative bacteria, the primary thiol is glutathione (GSH), a cysteinyl-containing tripeptide. In contrast, mycothiol (MSH), a cysteinyl pseudo-disaccharide, is dominant in Gram-positive actinobacteria, including antibiotic-producing actinomycetes and pathogenic mycobacteria. MSH is equivalent to GSH, either as a cofactor or as a substrate, in numerous biochemical processes, most of which have not been characterized, largely due to the dearth of information concerning MSH-dependent proteins. Actinomycetes are able to produce another thiol, ergothioneine (EGT), a histidine betaine derivative that is widely assimilated by plants and animals for variable physiological activities. The involvement of EGT in enzymatic reactions, however, lacks any precedent. Here we report that the unprecedented coupling of two bacterial thiols, MSH and EGT, has a constructive role in the biosynthesis of lincomycin A, a sulfur-containing lincosamide (C8 sugar) antibiotic that has been widely used for half a century to treat Gram-positive bacterial infections. EGT acts as a carrier to template the molecular assembly, and MSH is the sulfur donor for lincomycin maturation after thiol exchange. These thiols function through two unusual S-glycosylations that program lincosamide transfer, activation and modification, providing the first paradigm for EGT-associated biochemical processes and for the poorly understood MSH-dependent biotransformations, a newly described model that is potentially common in the incorporation of sulfur, an element essential for life and ubiquitous in living systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhao, Qunfei -- Wang, Min -- Xu, Dongxiao -- Zhang, Qinglin -- Liu, Wen -- England -- Nature. 2015 Feb 5;518(7537):115-9. doi: 10.1038/nature14137. Epub 2015 Jan 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. ; Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China. ; 1] State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China [2] Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25607359" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*biosynthesis ; Biological Products/metabolism ; Biosynthetic Pathways/genetics ; Biotransformation ; Cysteine/chemistry/*metabolism ; Ergothioneine/chemistry/*metabolism ; Glycopeptides/chemistry/*metabolism ; Glycosylation ; Inositol/chemistry/*metabolism ; Lincomycin/*biosynthesis ; Lincosamides/metabolism ; Molecular Sequence Data ; Streptomyces/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2015-08-11
    Description: The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abitua, Philip Barron -- Gainous, T Blair -- Kaczmarczyk, Angela N -- Winchell, Christopher J -- Hudson, Clare -- Kamata, Kaori -- Nakagawa, Masashi -- Tsuda, Motoyuki -- Kusakabe, Takehiro G -- Levine, Michael -- NS076542/NS/NINDS NIH HHS/ -- England -- Nature. 2015 Aug 27;524(7566):462-5. doi: 10.1038/nature14657. Epub 2015 Aug 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrative Genomics, Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA. ; Sorbonne Universites, Universite Pierre et Marie Curie, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Observatoire Oceanologique, 06230 Villefranche-sur-mer, France. ; Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan. ; Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26258298" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Patterning ; Bone Morphogenetic Proteins ; Ciona intestinalis/*cytology/*embryology/genetics/metabolism ; Ectoderm/metabolism ; Gonadotropin-Releasing Hormone/metabolism ; HEK293 Cells ; Homeodomain Proteins/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Larva/cytology/metabolism ; Molecular Sequence Data ; Neurons/*cytology/metabolism ; Protein Tyrosine Phosphatases/metabolism ; Receptors, G-Protein-Coupled/metabolism ; Vertebrates/*anatomy & histology/*embryology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2015-11-27
    Description: Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century. Here we report on the discovery and cultivation of a completely nitrifying bacterium from the genus Nitrospira, a globally distributed group of nitrite oxidizers. The genome of this chemolithoautotrophic organism encodes the pathways both for ammonia and nitrite oxidation, which are concomitantly activated during growth by ammonia oxidation to nitrate. Genes affiliated with the phylogenetically distinct ammonia monooxygenase and hydroxylamine dehydrogenase genes of Nitrospira are present in many environments and were retrieved on Nitrospira-contigs in new metagenomes from engineered systems. These findings fundamentally change our picture of nitrification and point to completely nitrifying Nitrospira as key components of nitrogen-cycling microbial communities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Daims, Holger -- Lebedeva, Elena V -- Pjevac, Petra -- Han, Ping -- Herbold, Craig -- Albertsen, Mads -- Jehmlich, Nico -- Palatinszky, Marton -- Vierheilig, Julia -- Bulaev, Alexandr -- Kirkegaard, Rasmus H -- von Bergen, Martin -- Rattei, Thomas -- Bendinger, Bernd -- Nielsen, Per H -- Wagner, Michael -- England -- Nature. 2015 Dec 24;528(7583):504-9. doi: 10.1038/nature16461. Epub 2015 Nov 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. ; Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld. 2, 119071 Moscow, Russia. ; Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark. ; Helmholtz-Centre for Environmental Research - UFZ, Department of Proteomics, Permoserstrasse 15, 04318 Leipzig, Germany. ; Helmholtz-Centre for Environmental Research - UFZ, Department of Metabolomics, Permoserstrasse 15, 04318 Leipzig, Germany. ; Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria. ; DVGW-Forschungsstelle TUHH, Hamburg University of Technology, 21073 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26610024" target="_blank"〉PubMed〈/a〉
    Keywords: Ammonia/*metabolism ; Bacteria/enzymology/genetics/growth & development/*metabolism ; Evolution, Molecular ; Genome, Bacterial/genetics ; Molecular Sequence Data ; Nitrates/*metabolism ; *Nitrification/genetics ; Nitrites/*metabolism ; Oxidation-Reduction ; Oxidoreductases/genetics/metabolism ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2015-03-25
    Description: The first step in the biogenesis of microRNAs is the processing of primary microRNAs (pri-miRNAs) by the microprocessor complex, composed of the RNA-binding protein DGCR8 and the type III RNase DROSHA. This initial event requires recognition of the junction between the stem and the flanking single-stranded RNA of the pri-miRNA hairpin by DGCR8 followed by recruitment of DROSHA, which cleaves the RNA duplex to yield the pre-miRNA product. While the mechanisms underlying pri-miRNA processing have been determined, the mechanism by which DGCR8 recognizes and binds pri-miRNAs, as opposed to other secondary structures present in transcripts, is not understood. Here we find in mammalian cells that methyltransferase-like 3 (METTL3) methylates pri-miRNAs, marking them for recognition and processing by DGCR8. Consistent with this, METTL3 depletion reduced the binding of DGCR8 to pri-miRNAs and resulted in the global reduction of mature miRNAs and concomitant accumulation of unprocessed pri-miRNAs. In vitro processing reactions confirmed the sufficiency of the N(6)-methyladenosine (m(6)A) mark in promoting pri-miRNA processing. Finally, gain-of-function experiments revealed that METTL3 is sufficient to enhance miRNA maturation in a global and non-cell-type-specific manner. Our findings reveal that the m(6)A mark acts as a key post-transcriptional modification that promotes the initiation of miRNA biogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475635/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alarcon, Claudio R -- Lee, Hyeseung -- Goodarzi, Hani -- Halberg, Nils -- Tavazoie, Sohail F -- T32 CA009673/CA/NCI NIH HHS/ -- England -- Nature. 2015 Mar 26;519(7544):482-5. doi: 10.1038/nature14281. Epub 2015 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25799998" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*analogs & derivatives/metabolism ; Base Sequence ; Cell Line ; Gene Expression Regulation ; Humans ; Methylation ; Methyltransferases/deficiency/metabolism ; MicroRNAs/*chemistry/*metabolism ; Molecular Sequence Data ; Nucleic Acid Conformation ; *RNA Processing, Post-Transcriptional ; RNA-Binding Proteins/metabolism ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2010-04-09
    Description: Recent studies have unequivocally associated the fat mass and obesity-associated (FTO) gene with the risk of obesity. In vitro FTO protein is an AlkB-like DNA/RNA demethylase with a strong preference for 3-methylthymidine (3-meT) in single-stranded DNA or 3-methyluracil (3-meU) in single-stranded RNA. Here we report the crystal structure of FTO in complex with the mononucleotide 3-meT. FTO comprises an amino-terminal AlkB-like domain and a carboxy-terminal domain with a novel fold. Biochemical assays show that these two domains interact with each other, which is required for FTO catalytic activity. In contrast with the structures of other AlkB members, FTO possesses an extra loop covering one side of the conserved jelly-roll motif. Structural comparison shows that this loop selectively competes with the unmethylated strand of the DNA duplex for binding to FTO, suggesting that it has an important role in FTO selection against double-stranded nucleic acids. The ability of FTO to distinguish 3-meT or 3-meU from other nucleotides is conferred by its hydrogen-bonding interaction with the two carbonyl oxygen atoms in 3-meT or 3-meU. Taken together, these results provide a structural basis for understanding FTO substrate-specificity, and serve as a foundation for the rational design of FTO inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Zhifu -- Niu, Tianhui -- Chang, Junbiao -- Lei, Xiaoguang -- Zhao, Mingyan -- Wang, Qiang -- Cheng, Wei -- Wang, Jinjing -- Feng, Yi -- Chai, Jijie -- England -- Nature. 2010 Apr 22;464(7292):1205-9. doi: 10.1038/nature08921. Epub 2010 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Institute of Biological Sciences, No. 7 Science Park Road, Beijing 102206, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20376003" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; DNA, Single-Stranded/chemistry/metabolism ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; Proteins/*chemistry/genetics/*metabolism ; RNA/chemistry/metabolism ; Structure-Activity Relationship ; Substrate Specificity ; Thymidine/analogs & derivatives/chemistry/metabolism ; Uracil/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2011-06-15
    Description: Polyhydroxylated steroids are regulators of body shape and size in higher organisms. In metazoans, intracellular receptors recognize these molecules. Plants, however, perceive steroids at membranes, using the membrane-integral receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1). Here we report the structure of the Arabidopsis thaliana BRI1 ligand-binding domain, determined by X-ray diffraction at 2.5 A resolution. We find a superhelix of 25 twisted leucine-rich repeats (LRRs), an architecture that is strikingly different from the assembly of LRRs in animal Toll-like receptors. A 70-amino-acid island domain between LRRs 21 and 22 folds back into the interior of the superhelix to create a surface pocket for binding the plant hormone brassinolide. Known loss- and gain-of-function mutations map closely to the hormone-binding site. We propose that steroid binding to BRI1 generates a docking platform for a co-receptor that is required for receptor activation. Our findings provide insight into the activation mechanism of this highly expanded family of plant receptors that have essential roles in hormone, developmental and innate immunity signalling.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280218/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3280218/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hothorn, Michael -- Belkhadir, Youssef -- Dreux, Marlene -- Dabi, Tsegaye -- Noel, Joseph P -- Wilson, Ian A -- Chory, Joanne -- AI042266/AI/NIAID NIH HHS/ -- R01 AI042266/AI/NIAID NIH HHS/ -- R01 AI042266-05/AI/NIAID NIH HHS/ -- R37 AI042266/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jun 12;474(7352):467-71. doi: 10.1038/nature10153.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Plant Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21666665" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*chemistry/metabolism ; Arabidopsis Proteins/*chemistry/*metabolism ; Binding Sites ; Brassinosteroids ; Cholestanols/chemistry/*metabolism ; Crystallography, X-Ray ; Enzyme Activation ; Models, Molecular ; Molecular Sequence Data ; Plant Growth Regulators/chemistry/*metabolism ; Protein Binding ; Protein Kinases/*chemistry/*metabolism ; Protein Multimerization ; Protein Structure, Tertiary ; Steroids, Heterocyclic/chemistry/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2010-08-24
    Description: The development of the human cerebral cortex is an orchestrated process involving the generation of neural progenitors in the periventricular germinal zones, cell proliferation characterized by symmetric and asymmetric mitoses, followed by migration of post-mitotic neurons to their final destinations in six highly ordered, functionally specialized layers. An understanding of the molecular mechanisms guiding these intricate processes is in its infancy, substantially driven by the discovery of rare mutations that cause malformations of cortical development. Mapping of disease loci in putative Mendelian forms of malformations of cortical development has been hindered by marked locus heterogeneity, small kindred sizes and diagnostic classifications that may not reflect molecular pathogenesis. Here we demonstrate the use of whole-exome sequencing to overcome these obstacles by identifying recessive mutations in WD repeat domain 62 (WDR62) as the cause of a wide spectrum of severe cerebral cortical malformations including microcephaly, pachygyria with cortical thickening as well as hypoplasia of the corpus callosum. Some patients with mutations in WDR62 had evidence of additional abnormalities including lissencephaly, schizencephaly, polymicrogyria and, in one instance, cerebellar hypoplasia, all traits traditionally regarded as distinct entities. In mice and humans, WDR62 transcripts and protein are enriched in neural progenitors within the ventricular and subventricular zones. Expression of WDR62 in the neocortex is transient, spanning the period of embryonic neurogenesis. Unlike other known microcephaly genes, WDR62 does not apparently associate with centrosomes and is predominantly nuclear in localization. These findings unify previously disparate aspects of cerebral cortical development and highlight the use of whole-exome sequencing to identify disease loci in settings in which traditional methods have proved challenging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bilguvar, Kaya -- Ozturk, Ali Kemal -- Louvi, Angeliki -- Kwan, Kenneth Y -- Choi, Murim -- Tatli, Burak -- Yalnizoglu, Dilek -- Tuysuz, Beyhan -- Caglayan, Ahmet Okay -- Gokben, Sarenur -- Kaymakcalan, Hande -- Barak, Tanyeri -- Bakircioglu, Mehmet -- Yasuno, Katsuhito -- Ho, Winson -- Sanders, Stephan -- Zhu, Ying -- Yilmaz, Sanem -- Dincer, Alp -- Johnson, Michele H -- Bronen, Richard A -- Kocer, Naci -- Per, Huseyin -- Mane, Shrikant -- Pamir, Mehmet Necmettin -- Yalcinkaya, Cengiz -- Kumandas, Sefer -- Topcu, Meral -- Ozmen, Meral -- Sestan, Nenad -- Lifton, Richard P -- State, Matthew W -- Gunel, Murat -- RC2 NS070477/NS/NINDS NIH HHS/ -- RC2 NS070477-01/NS/NINDS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- U24 NS051869-02S1/NS/NINDS NIH HHS/ -- UL1 RR024139NIH/RR/NCRR NIH HHS/ -- UO1MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 9;467(7312):207-10. doi: 10.1038/nature09327. Epub 2010 Aug 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20729831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Brain/*abnormalities/growth & development/pathology ; Brain Diseases/*genetics/pathology ; DNA Mutational Analysis/*methods ; Female ; Genes, Recessive ; Humans ; Male ; Mice ; Microcephaly/genetics/pathology ; Molecular Sequence Data ; Mutation ; Nerve Tissue Proteins/*genetics/metabolism ; Pedigree
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2010-10-01
    Description: In eukaryotes, U1 small nuclear ribonucleoprotein (snRNP) forms spliceosomes in equal stoichiometry with U2, U4, U5 and U6 snRNPs; however, its abundance in human far exceeds that of the other snRNPs. Here we used antisense morpholino oligonucleotide to U1 snRNA to achieve functional U1 snRNP knockdown in HeLa cells, and identified accumulated unspliced pre-mRNAs by genomic tiling microarrays. In addition to inhibiting splicing, U1 snRNP knockdown caused premature cleavage and polyadenylation in numerous pre-mRNAs at cryptic polyadenylation signals, frequently in introns near (〈5 kilobases) the start of the transcript. This did not occur when splicing was inhibited with U2 snRNA antisense morpholino oligonucleotide or the U2-snRNP-inactivating drug spliceostatin A unless U1 antisense morpholino oligonucleotide was also included. We further show that U1 snRNA-pre-mRNA base pairing was required to suppress premature cleavage and polyadenylation from nearby cryptic polyadenylation signals located in introns. These findings reveal a critical splicing-independent function for U1 snRNP in protecting the transcriptome, which we propose explains its overabundance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996489/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996489/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaida, Daisuke -- Berg, Michael G -- Younis, Ihab -- Kasim, Mumtaz -- Singh, Larry N -- Wan, Lili -- Dreyfuss, Gideon -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 2;468(7324):664-8. doi: 10.1038/nature09479. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881964" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Base Sequence ; HeLa Cells ; Humans ; Introns/genetics ; Molecular Sequence Data ; Oligonucleotide Array Sequence Analysis ; Oligonucleotides, Antisense/genetics/metabolism/pharmacology ; *Polyadenylation/drug effects/genetics ; Pyrans/pharmacology ; RNA Precursors/genetics/*metabolism ; *RNA Splicing/drug effects/genetics ; RNA, Small Nuclear/genetics/metabolism ; Ribonucleoprotein, U1 Small Nuclear/antagonists & inhibitors/genetics/*metabolism ; Spiro Compounds/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2010-04-30
    Description: Horizontal transfer (HT), or the passage of genetic material between non-mating species, is increasingly recognized as an important force in the evolution of eukaryotic genomes. Transposons, with their inherent ability to mobilize and amplify within genomes, may be especially prone to HT. However, the means by which transposons can spread across widely diverged species remain elusive. Here we present evidence that host-parasite interactions have promoted the HT of four transposon families between invertebrates and vertebrates. We found that Rhodnius prolixus, a triatomine bug feeding on the blood of various tetrapods and vector of Chagas' disease in humans, carries in its genome four distinct transposon families that also invaded the genomes of a diverse, but overlapping, set of tetrapods. The bug transposons are approximately 98% identical and cluster phylogenetically with those of the opossum and squirrel monkey, two of its preferred mammalian hosts in South America. We also identified one of these transposon families in the pond snail Lymnaea stagnalis, a cosmopolitan vector of trematodes infecting diverse vertebrates, whose ancestral sequence is nearly identical and clusters with those found in Old World mammals. Together these data provide evidence for a previously hypothesized role of host-parasite interactions in facilitating HT among animals. Furthermore, the large amount of DNA generated by the amplification of the horizontally transferred transposons supports the idea that the exchange of genetic material between hosts and parasites influences their genomic evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004126/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004126/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gilbert, Clement -- Schaack, Sarah -- Pace, John K 2nd -- Brindley, Paul J -- Feschotte, Cedric -- R01 GM077582/GM/NIGMS NIH HHS/ -- R01 GM077582-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Apr 29;464(7293):1347-50. doi: 10.1038/nature08939.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Texas, Arlington, Texas 76019, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20428170" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; DNA Transposable Elements/*genetics ; Disease Vectors ; Evolution, Molecular ; Gene Dosage ; Gene Transfer, Horizontal/*genetics ; Geography ; Host-Parasite Interactions/*genetics ; Lymnaea/genetics/physiology ; Molecular Sequence Data ; Opossums/genetics/parasitology ; Parasites/*classification/*genetics/physiology ; *Phylogeny ; Rhodnius/genetics/physiology ; Saimiri/genetics/parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2010-03-06
    Description: Hox genes are central to the specification of structures along the anterior-posterior body axis, and modifications in their expression have paralleled the emergence of diversity in vertebrate body plans. Here we describe the genomic organization of Hox clusters in different reptiles and show that squamates have accumulated unusually large numbers of transposable elements at these loci, reflecting extensive genomic rearrangements of coding and non-coding regulatory regions. Comparative expression analyses between two species showing different axial skeletons, the corn snake and the whiptail lizard, revealed major alterations in Hox13 and Hox10 expression features during snake somitogenesis, in line with the expansion of both caudal and thoracic regions. Variations in both protein sequences and regulatory modalities of posterior Hox genes suggest how this genetic system has dealt with its intrinsic collinear constraint to accompany the substantial morphological radiation observed in this group.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Di-Poi, Nicolas -- Montoya-Burgos, Juan I -- Miller, Hilary -- Pourquie, Olivier -- Milinkovitch, Michel C -- Duboule, Denis -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Mar 4;464(7285):99-103. doi: 10.1038/nature08789.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Research Center Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20203609" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Biological Evolution ; Body Patterning/*genetics ; *Colubridae/embryology/genetics ; DNA Transposable Elements/genetics ; Gene Expression Regulation, Developmental ; Genes, Homeobox/*genetics ; Genome/genetics ; Homeodomain Proteins/*genetics/*metabolism ; *Lizards/embryology/genetics ; Molecular Sequence Data ; Multigene Family/genetics ; Somites/embryology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2010-08-27
    Description: Centromeres are specified epigenetically, and the histone H3 variant CENP-A is assembled into the chromatin of all active centromeres. Divergence from H3 raises the possibility that CENP-A generates unique chromatin features to mark physically centromere location. Here we report the crystal structure of a subnucleosomal heterotetramer, human (CENP-A-H4)(2), that reveals three distinguishing properties encoded by the residues that comprise the CENP-A targeting domain (CATD; ref. 2): (1) a CENP-A-CENP-A interface that is substantially rotated relative to the H3-H3 interface; (2) a protruding loop L1 of the opposite charge as that on H3; and (3) strong hydrophobic contacts that rigidify the CENP-A-H4 interface. Residues involved in the CENP-A-CENP-A rotation are required for efficient incorporation into centromeric chromatin, indicating specificity for an unconventional nucleosome shape. DNA topological analysis indicates that CENP-A-containing nucleosomes are octameric with conventional left-handed DNA wrapping, in contrast to other recent proposals. Our results indicate that CENP-A marks centromere location by restructuring the nucleosome from within its folded histone core.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946842/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2946842/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sekulic, Nikolina -- Bassett, Emily A -- Rogers, Danielle J -- Black, Ben E -- GM08275/GM/NIGMS NIH HHS/ -- GM82989/GM/NIGMS NIH HHS/ -- R01 GM082989/GM/NIGMS NIH HHS/ -- R01 GM082989-01A1/GM/NIGMS NIH HHS/ -- R01 GM082989-02/GM/NIGMS NIH HHS/ -- R01 GM082989-03/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):347-51. doi: 10.1038/nature09323. Epub 2010 Aug 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20739937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Autoantigens/*chemistry/*metabolism ; Binding Sites ; Centromere/*chemistry/*metabolism ; Chromatin Assembly and Disassembly ; Chromosomal Proteins, Non-Histone/*chemistry/*metabolism ; Crystallography, X-Ray ; DNA/chemistry/metabolism ; Deuterium Exchange Measurement ; Epistasis, Genetic ; Histones/*chemistry/*metabolism ; Humans ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Nucleosomes/chemistry/metabolism ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Rotation ; Scattering, Small Angle ; Structure-Activity Relationship ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2011-10-18
    Description: Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification during the DNA replication phase of the cell cycle. Here we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication in Schizosaccharomyces pombe. Co-transcriptional RNAi releases RNA polymerase II (Pol II), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes that spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391703/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3391703/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zaratiegui, Mikel -- Castel, Stephane E -- Irvine, Danielle V -- Kloc, Anna -- Ren, Jie -- Li, Fei -- de Castro, Elisa -- Marin, Laura -- Chang, An-Yun -- Goto, Derek -- Cande, W Zacheus -- Antequera, Francisco -- Arcangioli, Benoit -- Martienssen, Robert A -- R01 GM076396/GM/NIGMS NIH HHS/ -- R01 GM076396-04/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Oct 16;479(7371):135-8. doi: 10.1038/nature10501.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22002604" target="_blank"〉PubMed〈/a〉
    Keywords: Centromere/genetics/metabolism ; Chromosomal Proteins, Non-Histone/genetics/metabolism ; DNA Damage ; DNA Replication/*physiology ; DNA-Directed DNA Polymerase/metabolism ; *Gene Silencing ; Heterochromatin/*genetics/*metabolism ; Histones/metabolism ; Homologous Recombination ; Models, Genetic ; Molecular Sequence Data ; *RNA Interference ; RNA Polymerase II/*metabolism ; RNA, Small Interfering/genetics/metabolism ; Replication Origin ; S Phase ; Schizosaccharomyces/*genetics ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2010-10-15
    Description: Bacterial chromosomes often carry integrated genetic elements (for example plasmids, transposons, prophages and islands) whose precise function and contribution to the evolutionary fitness of the host bacterium are unknown. The CTXphi prophage, which encodes cholera toxin in Vibrio cholerae, is known to be adjacent to a chromosomally integrated element of unknown function termed the toxin-linked cryptic (TLC). Here we report the characterization of a TLC-related element that corresponds to the genome of a satellite filamentous phage (TLC-Knphi1), which uses the morphogenesis genes of another filamentous phage (fs2phi) to form infectious TLC-Knphi1 phage particles. The TLC-Knphi1 phage genome carries a sequence similar to the dif recombination sequence, which functions in chromosome dimer resolution using XerC and XerD recombinases. The dif sequence is also exploited by lysogenic filamentous phages (for example CTXphi) for chromosomal integration of their genomes. Bacterial cells defective in the dimer resolution often show an aberrant filamentous cell morphology. We found that acquisition and chromosomal integration of the TLC-Knphi1 genome restored a perfect dif site and normal morphology to V. cholerae wild-type and mutant strains with dif(-) filamentation phenotypes. Furthermore, lysogeny of a dif(-) non-toxigenic V. cholerae with TLC-Knphi1 promoted its subsequent toxigenic conversion through integration of CTXphi into the restored dif site. These results reveal a remarkable level of cooperative interactions between multiple filamentous phages in the emergence of the bacterial pathogen that causes cholera.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967718/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967718/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hassan, Faizule -- Kamruzzaman, M -- Mekalanos, John J -- Faruque, Shah M -- R01 AI070963/AI/NIAID NIH HHS/ -- R01 AI070963-02/AI/NIAID NIH HHS/ -- R01 AI070963-03/AI/NIAID NIH HHS/ -- R01 GM068851/GM/NIGMS NIH HHS/ -- R01 GM068851-06/GM/NIGMS NIH HHS/ -- R01 GM068851-07/GM/NIGMS NIH HHS/ -- R01-AI070963/AI/NIAID NIH HHS/ -- R01-GM068851/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Oct 21;467(7318):982-5. doi: 10.1038/nature09469. Epub 2010 Oct 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944629" target="_blank"〉PubMed〈/a〉
    Keywords: Attachment Sites, Microbiological/genetics ; Base Sequence ; Cholera/epidemiology/microbiology ; Cholera Toxin/genetics ; Evolution, Molecular ; Genes, Bacterial/genetics ; Genes, Viral/*genetics ; Genome, Bacterial/genetics ; Genome, Viral/genetics ; Helper Viruses/genetics/physiology ; Humans ; Inovirus/*genetics/pathogenicity/*physiology ; Lysogeny/genetics/physiology ; Molecular Sequence Data ; Phenotype ; Plasmids/genetics ; Prophages/genetics/physiology ; Recombination, Genetic/genetics ; Transduction, Genetic ; Vibrio cholerae/classification/*genetics/pathogenicity/*virology ; Virus Integration/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2011-11-18
    Description: Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing approximately 94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272368/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272368/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Young, Nevin D -- Debelle, Frederic -- Oldroyd, Giles E D -- Geurts, Rene -- Cannon, Steven B -- Udvardi, Michael K -- Benedito, Vagner A -- Mayer, Klaus F X -- Gouzy, Jerome -- Schoof, Heiko -- Van de Peer, Yves -- Proost, Sebastian -- Cook, Douglas R -- Meyers, Blake C -- Spannagl, Manuel -- Cheung, Foo -- De Mita, Stephane -- Krishnakumar, Vivek -- Gundlach, Heidrun -- Zhou, Shiguo -- Mudge, Joann -- Bharti, Arvind K -- Murray, Jeremy D -- Naoumkina, Marina A -- Rosen, Benjamin -- Silverstein, Kevin A T -- Tang, Haibao -- Rombauts, Stephane -- Zhao, Patrick X -- Zhou, Peng -- Barbe, Valerie -- Bardou, Philippe -- Bechner, Michael -- Bellec, Arnaud -- Berger, Anne -- Berges, Helene -- Bidwell, Shelby -- Bisseling, Ton -- Choisne, Nathalie -- Couloux, Arnaud -- Denny, Roxanne -- Deshpande, Shweta -- Dai, Xinbin -- Doyle, Jeff J -- Dudez, Anne-Marie -- Farmer, Andrew D -- Fouteau, Stephanie -- Franken, Carolien -- Gibelin, Chrystel -- Gish, John -- Goldstein, Steven -- Gonzalez, Alvaro J -- Green, Pamela J -- Hallab, Asis -- Hartog, Marijke -- Hua, Axin -- Humphray, Sean J -- Jeong, Dong-Hoon -- Jing, Yi -- Jocker, Anika -- Kenton, Steve M -- Kim, Dong-Jin -- Klee, Kathrin -- Lai, Hongshing -- Lang, Chunting -- Lin, Shaoping -- Macmil, Simone L -- Magdelenat, Ghislaine -- Matthews, Lucy -- McCorrison, Jamison -- Monaghan, Erin L -- Mun, Jeong-Hwan -- Najar, Fares Z -- Nicholson, Christine -- Noirot, Celine -- O'Bleness, Majesta -- Paule, Charles R -- Poulain, Julie -- Prion, Florent -- Qin, Baifang -- Qu, Chunmei -- Retzel, Ernest F -- Riddle, Claire -- Sallet, Erika -- Samain, Sylvie -- Samson, Nicolas -- Sanders, Iryna -- Saurat, Olivier -- Scarpelli, Claude -- Schiex, Thomas -- Segurens, Beatrice -- Severin, Andrew J -- Sherrier, D Janine -- Shi, Ruihua -- Sims, Sarah -- Singer, Susan R -- Sinharoy, Senjuti -- Sterck, Lieven -- Viollet, Agnes -- Wang, Bing-Bing -- Wang, Keqin -- Wang, Mingyi -- Wang, Xiaohong -- Warfsmann, Jens -- Weissenbach, Jean -- White, Doug D -- White, Jim D -- Wiley, Graham B -- Wincker, Patrick -- Xing, Yanbo -- Yang, Limei -- Yao, Ziyun -- Ying, Fu -- Zhai, Jixian -- Zhou, Liping -- Zuber, Antoine -- Denarie, Jean -- Dixon, Richard A -- May, Gregory D -- Schwartz, David C -- Rogers, Jane -- Quetier, Francis -- Town, Christopher D -- Roe, Bruce A -- BB/G023832/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/11524/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2011 Nov 16;480(7378):520-4. doi: 10.1038/nature10625.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of Minnesota, St Paul, Minnesota 55108, USA. neviny@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22089132" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; *Genome, Plant ; Medicago truncatula/*genetics/*microbiology ; Molecular Sequence Data ; Nitrogen Fixation/genetics ; Rhizobium/*physiology ; Soybeans/genetics ; *Symbiosis ; Synteny ; Vitis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2011-07-15
    Description: A hallmark of RNA silencing is a class of approximately 22-nucleotide RNAs that are processed from double-stranded RNA precursors by Dicer. Accurate processing by Dicer is crucial for the functionality of microRNAs (miRNAs). The current model posits that Dicer selects cleavage sites by measuring a set distance from the 3' overhang of the double-stranded RNA terminus. Here we report that human Dicer anchors not only the 3' end but also the 5' end, with the cleavage site determined mainly by the distance ( approximately 22 nucleotides) from the 5' end (5' counting rule). This cleavage requires a 5'-terminal phosphate group. Further, we identify a novel basic motif (5' pocket) in human Dicer that recognizes the 5'-phosphorylated end. The 5' counting rule and the 5' anchoring residues are conserved in Drosophila Dicer-1, but not in Giardia Dicer. Mutations in the 5' pocket reduce processing efficiency and alter cleavage sites in vitro. Consistently, miRNA biogenesis is perturbed in vivo when Dicer-null embryonic stem cells are replenished with the 5'-pocket mutant. Thus, 5'-end recognition by Dicer is important for precise and effective biogenesis of miRNAs. Insights from this study should also afford practical benefits to the design of small hairpin RNAs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693635/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4693635/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Park, Jong-Eun -- Heo, Inha -- Tian, Yuan -- Simanshu, Dhirendra K -- Chang, Hyeshik -- Jee, David -- Patel, Dinshaw J -- Kim, V Narry -- P30 CA008748/CA/NCI NIH HHS/ -- R01 AI068776/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Jul 13;475(7355):201-5. doi: 10.1038/nature10198.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21753850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites/genetics ; DEAD-box RNA Helicases/deficiency/genetics/*metabolism ; Drosophila Proteins/metabolism ; Embryonic Stem Cells/metabolism ; Evolution, Molecular ; Giardia/enzymology ; HEK293 Cells ; Humans ; MicroRNAs/biosynthesis/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Mutant Proteins/chemistry/genetics/metabolism ; Mutation/genetics ; Phosphates/metabolism ; Phosphorylation ; RNA Helicases/metabolism ; Ribonuclease III/deficiency/genetics/*metabolism ; Substrate Specificity/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2011-11-04
    Description: Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070744/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070744/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lorenzen, Eline D -- Nogues-Bravo, David -- Orlando, Ludovic -- Weinstock, Jaco -- Binladen, Jonas -- Marske, Katharine A -- Ugan, Andrew -- Borregaard, Michael K -- Gilbert, M Thomas P -- Nielsen, Rasmus -- Ho, Simon Y W -- Goebel, Ted -- Graf, Kelly E -- Byers, David -- Stenderup, Jesper T -- Rasmussen, Morten -- Campos, Paula F -- Leonard, Jennifer A -- Koepfli, Klaus-Peter -- Froese, Duane -- Zazula, Grant -- Stafford, Thomas W Jr -- Aaris-Sorensen, Kim -- Batra, Persaram -- Haywood, Alan M -- Singarayer, Joy S -- Valdes, Paul J -- Boeskorov, Gennady -- Burns, James A -- Davydov, Sergey P -- Haile, James -- Jenkins, Dennis L -- Kosintsev, Pavel -- Kuznetsova, Tatyana -- Lai, Xulong -- Martin, Larry D -- McDonald, H Gregory -- Mol, Dick -- Meldgaard, Morten -- Munch, Kasper -- Stephan, Elisabeth -- Sablin, Mikhail -- Sommer, Robert S -- Sipko, Taras -- Scott, Eric -- Suchard, Marc A -- Tikhonov, Alexei -- Willerslev, Rane -- Wayne, Robert K -- Cooper, Alan -- Hofreiter, Michael -- Sher, Andrei -- Shapiro, Beth -- Rahbek, Carsten -- Willerslev, Eske -- R01 HG003229/HG/NHGRI NIH HHS/ -- England -- Nature. 2011 Nov 2;479(7373):359-64. doi: 10.1038/nature10574.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for GeoGenetics, University of Copenhagen, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22048313" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bayes Theorem ; *Biota ; Bison ; Climate Change/*history ; DNA, Mitochondrial/analysis/genetics ; Europe ; *Extinction, Biological ; Fossils ; Genetic Variation ; Geography ; History, Ancient ; Horses ; Human Activities/*history ; Humans ; Mammals/genetics/*physiology ; Mammoths ; Molecular Sequence Data ; Population Dynamics ; Reindeer ; Siberia ; Species Specificity ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2011-03-04
    Description: The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076007/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076007/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inuzuka, Hiroyuki -- Shaik, Shavali -- Onoyama, Ichiro -- Gao, Daming -- Tseng, Alan -- Maser, Richard S -- Zhai, Bo -- Wan, Lixin -- Gutierrez, Alejandro -- Lau, Alan W -- Xiao, Yonghong -- Christie, Amanda L -- Aster, Jon -- Settleman, Jeffrey -- Gygi, Steven P -- Kung, Andrew L -- Look, Thomas -- Nakayama, Keiichi I -- DePinho, Ronald A -- Wei, Wenyi -- GM089763/GM/NIGMS NIH HHS/ -- R01 GM089763/GM/NIGMS NIH HHS/ -- R01 GM089763-01/GM/NIGMS NIH HHS/ -- R01 GM089763-02/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Mar 3;471(7336):104-9. doi: 10.1038/nature09732.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368833" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Apoptosis/drug effects ; Benzenesulfonates/pharmacology ; Biphenyl Compounds/pharmacology ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line, Tumor ; F-Box Proteins/genetics/*metabolism ; Glycogen Synthase Kinase 3/metabolism ; Humans ; Mice ; Molecular Sequence Data ; Myeloid Cell Leukemia Sequence 1 Protein ; Niacinamide/analogs & derivatives ; Nitrophenols/pharmacology ; Phenylurea Compounds ; Phosphorylation ; Piperazines/pharmacology ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology ; Protein Binding/drug effects ; Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors/*chemistry/*metabolism ; Pyridines/pharmacology ; SKP Cullin F-Box Protein Ligases/*chemistry/*metabolism ; Sulfonamides/pharmacology ; Tumor Suppressor Proteins/deficiency/genetics/metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; *Ubiquitination/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2011-05-27
    Description: Swine influenza A viruses (SwIV) cause significant economic losses in animal husbandry as well as instances of human disease and occasionally give rise to human pandemics, including that caused by the H1N1/2009 virus. The lack of systematic and longitudinal influenza surveillance in pigs has hampered attempts to reconstruct the origins of this pandemic. Most existing swine data were derived from opportunistic samples collected from diseased pigs in disparate geographical regions, not from prospective studies in defined locations, hence the evolutionary and transmission dynamics of SwIV are poorly understood. Here we quantify the epidemiological, genetic and antigenic dynamics of SwIV in Hong Kong using a data set of more than 650 SwIV isolates and more than 800 swine sera from 12 years of systematic surveillance in this region, supplemented with data stretching back 34 years. Intercontinental virus movement has led to reassortment and lineage replacement, creating an antigenically and genetically diverse virus population whose dynamics are quantitatively different from those previously observed for human influenza viruses. Our findings indicate that increased antigenic drift is associated with reassortment events and offer insights into the emergence of influenza viruses with epidemic potential in swine and humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vijaykrishna, Dhanasekaran -- Smith, Gavin J D -- Pybus, Oliver G -- Zhu, Huachen -- Bhatt, Samir -- Poon, Leo L M -- Riley, Steven -- Bahl, Justin -- Ma, Siu K -- Cheung, Chung L -- Perera, Ranawaka A P M -- Chen, Honglin -- Shortridge, Kennedy F -- Webby, Richard J -- Webster, Robert G -- Guan, Yi -- Peiris, J S Malik -- HHSN26600700005C/PHS HHS/ -- MC_G0902096/Medical Research Council/United Kingdom -- England -- Nature. 2011 May 26;473(7348):519-22. doi: 10.1038/nature10004.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Emerging Infectious Diseases & Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21614079" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Birds/virology ; *Evolution, Molecular ; Female ; Hong Kong/epidemiology ; Humans ; Influenza A Virus, H1N1 Subtype/classification/genetics/isolation & ; purification/*physiology ; Influenza in Birds/transmission/virology ; Influenza, Human/epidemiology/transmission/virology ; Male ; Molecular Epidemiology ; Molecular Sequence Data ; Orthomyxoviridae Infections/epidemiology/transmission/*veterinary/virology ; Phylogeny ; Population Surveillance ; Reassortant Viruses/genetics/immunology/isolation & purification/physiology ; Swine/blood/*virology ; Swine Diseases/blood/epidemiology/*transmission/*virology ; Zoonoses/epidemiology/transmission/*virology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2011-02-08
    Description: Geographic atrophy (GA), an untreatable advanced form of age-related macular degeneration, results from retinal pigmented epithelium (RPE) cell degeneration. Here we show that the microRNA (miRNA)-processing enzyme DICER1 is reduced in the RPE of humans with GA, and that conditional ablation of Dicer1, but not seven other miRNA-processing enzymes, induces RPE degeneration in mice. DICER1 knockdown induces accumulation of Alu RNA in human RPE cells and Alu-like B1 and B2 RNAs in mouse RPE. Alu RNA is increased in the RPE of humans with GA, and this pathogenic RNA induces human RPE cytotoxicity and RPE degeneration in mice. Antisense oligonucleotides targeting Alu/B1/B2 RNAs prevent DICER1 depletion-induced RPE degeneration despite global miRNA downregulation. DICER1 degrades Alu RNA, and this digested Alu RNA cannot induce RPE degeneration in mice. These findings reveal a miRNA-independent cell survival function for DICER1 involving retrotransposon transcript degradation, show that Alu RNA can directly cause human pathology, and identify new targets for a major cause of blindness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077055/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077055/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaneko, Hiroki -- Dridi, Sami -- Tarallo, Valeria -- Gelfand, Bradley D -- Fowler, Benjamin J -- Cho, Won Gil -- Kleinman, Mark E -- Ponicsan, Steven L -- Hauswirth, William W -- Chiodo, Vince A -- Kariko, Katalin -- Yoo, Jae Wook -- Lee, Dong-ki -- Hadziahmetovic, Majda -- Song, Ying -- Misra, Smita -- Chaudhuri, Gautam -- Buaas, Frank W -- Braun, Robert E -- Hinton, David R -- Zhang, Qing -- Grossniklaus, Hans E -- Provis, Jan M -- Madigan, Michele C -- Milam, Ann H -- Justice, Nikki L -- Albuquerque, Romulo J C -- Blandford, Alexander D -- Bogdanovich, Sasha -- Hirano, Yoshio -- Witta, Jassir -- Fuchs, Elaine -- Littman, Dan R -- Ambati, Balamurali K -- Rudin, Charles M -- Chong, Mark M W -- Provost, Patrick -- Kugel, Jennifer F -- Goodrich, James A -- Dunaief, Joshua L -- Baffi, Judit Z -- Ambati, Jayakrishna -- NIHU10EY013729/EY/NEI NIH HHS/ -- P30 EY006360/EY/NEI NIH HHS/ -- P30 EY014800/EY/NEI NIH HHS/ -- P30 EY014800-07/EY/NEI NIH HHS/ -- P30 EY021721/EY/NEI NIH HHS/ -- P30EY003040/EY/NEI NIH HHS/ -- P30EY008571/EY/NEI NIH HHS/ -- P30EY06360/EY/NEI NIH HHS/ -- R01 EY018350/EY/NEI NIH HHS/ -- R01 EY018350-05/EY/NEI NIH HHS/ -- R01 EY018836/EY/NEI NIH HHS/ -- R01 EY018836-04/EY/NEI NIH HHS/ -- R01 EY020672/EY/NEI NIH HHS/ -- R01 EY020672-02/EY/NEI NIH HHS/ -- R01 GM068414/GM/NIGMS NIH HHS/ -- R01EY001545/EY/NEI NIH HHS/ -- R01EY011123/EY/NEI NIH HHS/ -- R01EY015240/EY/NEI NIH HHS/ -- R01EY015422/EY/NEI NIH HHS/ -- R01EY017182/EY/NEI NIH HHS/ -- R01EY017950/EY/NEI NIH HHS/ -- R01EY018350/EY/NEI NIH HHS/ -- R01EY018836/EY/NEI NIH HHS/ -- R01EY020672/EY/NEI NIH HHS/ -- R01GM068414/GM/NIGMS NIH HHS/ -- R01HD027215/HD/NICHD NIH HHS/ -- R21 EY019778/EY/NEI NIH HHS/ -- R21 EY019778-02/EY/NEI NIH HHS/ -- R21AI076757/AI/NIAID NIH HHS/ -- R21EY019778/EY/NEI NIH HHS/ -- RC1 EY020442/EY/NEI NIH HHS/ -- RC1 EY020442-02/EY/NEI NIH HHS/ -- RC1EY020442/EY/NEI NIH HHS/ -- T32HL091812/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Mar 17;471(7338):325-30. doi: 10.1038/nature09830. Epub 2011 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology & Visual Sciences, University of Kentucky, Lexington, Kentucky 40506, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21297615" target="_blank"〉PubMed〈/a〉
    Keywords: Alu Elements/*genetics ; Animals ; Cell Death ; Cell Survival ; Cells, Cultured ; DEAD-box RNA Helicases/*deficiency/genetics/metabolism ; Gene Knockdown Techniques ; Humans ; Macular Degeneration/*genetics/*pathology ; Mice ; MicroRNAs/metabolism ; Molecular Sequence Data ; Oligonucleotides, Antisense ; Phenotype ; RNA/*genetics/*metabolism ; Retinal Pigment Epithelium/enzymology/metabolism/pathology ; Ribonuclease III/*deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2011-06-17
    Description: Transforming growth factor (TGF)-beta is stored in the extracellular matrix as a latent complex with its prodomain. Activation of TGF-beta1 requires the binding of alpha(v) integrin to an RGD sequence in the prodomain and exertion of force on this domain, which is held in the extracellular matrix by latent TGF-beta binding proteins. Crystals of dimeric porcine proTGF-beta1 reveal a ring-shaped complex, a novel fold for the prodomain, and show how the prodomain shields the growth factor from recognition by receptors and alters its conformation. Complex formation between alpha(v)beta(6) integrin and the prodomain is insufficient for TGF-beta1 release. Force-dependent activation requires unfastening of a 'straitjacket' that encircles each growth-factor monomer at a position that can be locked by a disulphide bond. Sequences of all 33 TGF-beta family members indicate a similar prodomain fold. The structure provides insights into the regulation of a family of growth and differentiation factors of fundamental importance in morphogenesis and homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717672/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4717672/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shi, Minlong -- Zhu, Jianghai -- Wang, Rui -- Chen, Xing -- Mi, Lizhi -- Walz, Thomas -- Springer, Timothy A -- P01 HL103526/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 Jun 15;474(7351):343-9. doi: 10.1038/nature10152.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immune Disease Institute, Children's Hospital Boston and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21677751" target="_blank"〉PubMed〈/a〉
    Keywords: Activins/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, Neoplasm/chemistry/metabolism ; Camurati-Engelmann Syndrome/genetics ; Cell Line ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; Integrins/chemistry/metabolism ; Latent TGF-beta Binding Proteins/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multigene Family ; Mutation/genetics ; Oligopeptides/chemistry/metabolism ; Protein Structure, Tertiary ; Receptors, Transforming Growth Factor beta/chemistry/metabolism ; Swine ; Transforming Growth Factor beta1/biosynthesis/*chemistry/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2011-07-26
    Description: Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record ( approximately 240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shinzato, Chuya -- Shoguchi, Eiichi -- Kawashima, Takeshi -- Hamada, Mayuko -- Hisata, Kanako -- Tanaka, Makiko -- Fujie, Manabu -- Fujiwara, Mayuki -- Koyanagi, Ryo -- Ikuta, Tetsuro -- Fujiyama, Asao -- Miller, David J -- Satoh, Nori -- England -- Nature. 2011 Jul 24;476(7360):320-3. doi: 10.1038/nature10249.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21785439" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anthozoa/chemistry/*genetics/immunology/*physiology ; *Climate Change ; Coral Reefs ; Cyclohexylamines ; Cystathionine beta-Synthase/genetics ; Cysteine/biosynthesis ; DNA Damage/genetics/radiation effects ; Fossils ; Genome/*genetics ; Glycine/analogs & derivatives/biosynthesis ; Molecular Sequence Data ; Phylogeny ; Protein Structure, Tertiary ; Sea Anemones/genetics/immunology ; Symbiosis/genetics ; Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2011-08-19
    Description: Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393110/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393110/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walker, Laura M -- Huber, Michael -- Doores, Katie J -- Falkowska, Emilia -- Pejchal, Robert -- Julien, Jean-Philippe -- Wang, Sheng-Kai -- Ramos, Alejandra -- Chan-Hui, Po-Ying -- Moyle, Matthew -- Mitcham, Jennifer L -- Hammond, Phillip W -- Olsen, Ole A -- Phung, Pham -- Fling, Steven -- Wong, Chi-Huey -- Phogat, Sanjay -- Wrin, Terri -- Simek, Melissa D -- Protocol G Principal Investigators -- Koff, Wayne C -- Wilson, Ian A -- Burton, Dennis R -- Poignard, Pascal -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- England -- Nature. 2011 Sep 22;477(7365):466-70. doi: 10.1038/nature10373.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science and IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21849977" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/biosynthesis/immunology ; Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/*immunology ; Cell Line ; Epitope Mapping ; Epitopes/chemistry/immunology ; Glycoproteins/chemistry/immunology ; Glycosylation ; HEK293 Cells ; HIV/*classification/*immunology/isolation & purification ; HIV Antibodies/*immunology ; HIV Infections/immunology/therapy ; Human Immunodeficiency Virus Proteins/chemistry/immunology ; Humans ; Immune Sera/blood/immunology ; Molecular Sequence Data ; Neutralization Tests
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2011-05-27
    Description: Alternative splicing of pre-messenger RNAs diversifies gene products in eukaryotes and is guided by factors that enable spliceosomes to recognize particular splice sites. Here we report that alternative splicing of Saccharomyces cerevisiae SRC1 pre-mRNA is promoted by the conserved ubiquitin-like protein Hub1. Structural and biochemical data show that Hub1 binds non-covalently to a conserved element termed HIND, which is present in the spliceosomal protein Snu66 in yeast and mammals, and Prp38 in plants. Hub1 binding mildly alters spliceosomal protein interactions and barely affects general splicing in S. cerevisiae. However, spliceosomes that lack Hub1, or are defective in Hub1-HIND interaction, cannot use certain non-canonical 5' splice sites and are defective in alternative SRC1 splicing. Hub1 confers alternative splicing not only when bound to HIND, but also when experimentally fused to Snu66, Prp38, or even the core splicing factor Prp8. Our study indicates a novel mechanism for splice site utilization that is guided by non-covalent modification of the spliceosome by an unconventional ubiquitin-like modifier.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587138/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3587138/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mishra, Shravan Kumar -- Ammon, Tim -- Popowicz, Grzegorz M -- Krajewski, Marcin -- Nagel, Roland J -- Ares, Manuel Jr -- Holak, Tad A -- Jentsch, Stefan -- GM040478/GM/NIGMS NIH HHS/ -- R01 GM040478/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 May 25;474(7350):173-8. doi: 10.1038/nature10143.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21614000" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Amino Acid Sequence ; Binding Sites ; Cell Line ; Gene Deletion ; *Gene Expression Regulation, Fungal ; Humans ; Ligases/deficiency/genetics/*metabolism ; Membrane Proteins/genetics ; Models, Molecular ; Molecular Sequence Data ; Nuclear Proteins/genetics ; Protein Binding ; Protein Conformation ; RNA Splice Sites/*genetics ; RNA, Fungal/*genetics/metabolism ; RNA, Messenger/genetics/metabolism ; Ribonucleoprotein, U4-U6 Small Nuclear/deficiency/genetics ; Ribonucleoprotein, U5 Small Nuclear/deficiency/genetics ; Ribonucleoproteins, Small Nuclear/chemistry/deficiency/genetics/metabolism ; Saccharomyces cerevisiae/chemistry/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/*metabolism ; Schizosaccharomyces/chemistry/genetics/metabolism ; Schizosaccharomyces pombe Proteins/genetics/metabolism ; Spliceosomes/chemistry/metabolism ; Ubiquitin-Protein Ligase Complexes/deficiency/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2011-04-22
    Description: Genetic methods of manipulating or eradicating disease vector populations have long been discussed as an attractive alternative to existing control measures because of their potential advantages in terms of effectiveness and species specificity. The development of genetically engineered malaria-resistant mosquitoes has shown, as a proof of principle, the possibility of targeting the mosquito's ability to serve as a disease vector. The translation of these achievements into control measures requires an effective technology to spread a genetic modification from laboratory mosquitoes to field populations. We have suggested previously that homing endonuclease genes (HEGs), a class of simple selfish genetic elements, could be exploited for this purpose. Here we demonstrate that a synthetic genetic element, consisting of mosquito regulatory regions and the homing endonuclease gene I-SceI, can substantially increase its transmission to the progeny in transgenic mosquitoes of the human malaria vector Anopheles gambiae. We show that the I-SceI element is able to invade receptive mosquito cage populations rapidly, validating mathematical models for the transmission dynamics of HEGs. Molecular analyses confirm that expression of I-SceI in the male germline induces high rates of site-specific chromosomal cleavage and gene conversion, which results in the gain of the I-SceI gene, and underlies the observed genetic drive. These findings demonstrate a new mechanism by which genetic control measures can be implemented. Our results also show in principle how sequence-specific genetic drive elements like HEGs could be used to take the step from the genetic engineering of individuals to the genetic engineering of populations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093433/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3093433/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Windbichler, Nikolai -- Menichelli, Miriam -- Papathanos, Philippos Aris -- Thyme, Summer B -- Li, Hui -- Ulge, Umut Y -- Hovde, Blake T -- Baker, David -- Monnat, Raymond J Jr -- Burt, Austin -- Crisanti, Andrea -- CA133831/CA/NCI NIH HHS/ -- RL1 CA133831/CA/NCI NIH HHS/ -- RL1 CA133831-01/CA/NCI NIH HHS/ -- RL1 CA133831-02/CA/NCI NIH HHS/ -- RL1 CA133831-03/CA/NCI NIH HHS/ -- RL1 CA133831-04/CA/NCI NIH HHS/ -- RL1 CA133831-05/CA/NCI NIH HHS/ -- RL1 GM084433/GM/NIGMS NIH HHS/ -- RL1 GM084433-01/GM/NIGMS NIH HHS/ -- RL1 GM084433-02/GM/NIGMS NIH HHS/ -- RL1 GM084433-03/GM/NIGMS NIH HHS/ -- RL1 GM084433-04/GM/NIGMS NIH HHS/ -- RL1 GM084433-05/GM/NIGMS NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2011 May 12;473(7346):212-5. doi: 10.1038/nature09937. Epub 2011 Apr 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Imperial College London, Department of Life Sciences, South Kensington Campus, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21508956" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Genetically Modified ; Anopheles gambiae/*genetics ; Deoxyribonucleases, Type II Site-Specific/genetics ; Female ; Genes, Reporter/genetics ; *Genetic Engineering ; Genotype ; Insect Vectors/*genetics ; Male ; Molecular Sequence Data ; Mosquito Control/*methods ; Saccharomyces cerevisiae Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2011-06-04
    Description: Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Borgonie, G -- Garcia-Moyano, A -- Litthauer, D -- Bert, W -- Bester, A -- van Heerden, E -- Moller, C -- Erasmus, M -- Onstott, T C -- England -- Nature. 2011 Jun 2;474(7349):79-82. doi: 10.1038/nature09974.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Nematology Section, Ghent University, Ledeganckstraat 35, B9000 Ghent, Belgium. gborgonie@gmail.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21637257" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; DNA, Ribosomal/genetics ; *Ecosystem ; Hot Temperature ; Molecular Sequence Data ; Nematoda/*classification/genetics/*physiology ; Reproduction, Asexual ; South Africa ; Species Specificity ; Water
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2011-10-14
    Description: DNA molecules provide what is probably the most iconic example of self-replication--the ability of a system to replicate, or make copies of, itself. In living cells the process is mediated by enzymes and occurs autonomously, with the number of replicas increasing exponentially over time without the need for external manipulation. Self-replication has also been implemented with synthetic systems, including RNA enzymes designed to undergo self-sustained exponential amplification. An exciting next step would be to use self-replication in materials fabrication, which requires robust and general systems capable of copying and amplifying functional materials or structures. Here we report a first development in this direction, using DNA tile motifs that can recognize and bind complementary tiles in a pre-programmed fashion. We first design tile motifs so they form a seven-tile seed sequence; then use the seeds to instruct the formation of a first generation of complementary seven-tile daughter sequences; and finally use the daughters to instruct the formation of seven-tile granddaughter sequences that are identical to the initial seed sequences. Considering that DNA is a functional material that can organize itself and other molecules into useful structures, our findings raise the tantalizing prospect that we may one day be able to realize self-replicating materials with various patterns or useful functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192504/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3192504/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Tong -- Sha, Ruojie -- Dreyfus, Remi -- Leunissen, Mirjam E -- Maass, Corinna -- Pine, David J -- Chaikin, Paul M -- Seeman, Nadrian C -- GM-29554/GM/NIGMS NIH HHS/ -- R37 GM029554-28/GM/NIGMS NIH HHS/ -- R37 GM029554-29/GM/NIGMS NIH HHS/ -- R37 GM029554-30/GM/NIGMS NIH HHS/ -- R37 GM029554-31/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Oct 12;478(7368):225-8. doi: 10.1038/nature10500.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, New York University, New York, New York 10003, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993758" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Biomimetic Materials/*chemistry ; Computational Biology ; DNA/*chemistry/genetics/ultrastructure ; DNA Replication ; Hydrogen Bonding ; Microscopy, Atomic Force ; *Models, Biological ; Molecular Sequence Data ; Nanostructures/*chemistry/ultrastructure ; Nanotechnology/*methods ; Nucleic Acid Conformation ; Nucleotide Motifs ; Software ; Streptavidin/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2011-09-29
    Description: Transcription of the mitochondrial genome is performed by a single-subunit RNA polymerase (mtRNAP) that is distantly related to the RNAP of bacteriophage T7, the pol I family of DNA polymerases, and single-subunit RNAPs from chloroplasts. Whereas T7 RNAP can initiate transcription by itself, mtRNAP requires the factors TFAM and TFB2M for binding and melting promoter DNA. TFAM is an abundant protein that binds and bends promoter DNA 15-40 base pairs upstream of the transcription start site, and stimulates the recruitment of mtRNAP and TFB2M to the promoter. TFB2M assists mtRNAP in promoter melting and reaches the active site of mtRNAP to interact with the first base pair of the RNA-DNA hybrid. Here we report the X-ray structure of human mtRNAP at 2.5 A resolution, which reveals a T7-like catalytic carboxy-terminal domain, an amino-terminal domain that remotely resembles the T7 promoter-binding domain, a novel pentatricopeptide repeat domain, and a flexible N-terminal extension. The pentatricopeptide repeat domain sequesters an AT-rich recognition loop, which binds promoter DNA in T7 RNAP, probably explaining the need for TFAM during promoter binding. Consistent with this, substitution of a conserved arginine residue in the AT-rich recognition loop, or release of this loop by deletion of the N-terminal part of mtRNAP, had no effect on transcription. The fingers domain and the intercalating hairpin, which melts DNA in phage RNAPs, are repositioned, explaining the need for TFB2M during promoter melting. Our results provide a new venue for the mechanistic analysis of mitochondrial transcription. They also indicate how an early phage-like mtRNAP lost functions in promoter binding and melting, which were provided by initiation factors in trans during evolution, to enable mitochondrial gene regulation and the adaptation of mitochondrial function to changes in the environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ringel, Rieke -- Sologub, Marina -- Morozov, Yaroslav I -- Litonin, Dmitry -- Cramer, Patrick -- Temiakov, Dmitry -- England -- Nature. 2011 Sep 25;478(7368):269-73. doi: 10.1038/nature10435.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universitat Munchen, Feodor-Lynen-Strasse 25, 81377 Munich, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21947009" target="_blank"〉PubMed〈/a〉
    Keywords: AT Rich Sequence/genetics ; Amino Acid Sequence ; Bacteriophage T7/enzymology ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; DNA/chemistry/genetics/metabolism ; DNA-Directed RNA Polymerases/*chemistry/metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Mitochondria/*enzymology ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Denaturation ; Promoter Regions, Genetic/genetics ; Protein Structure, Tertiary ; Sequence Alignment ; Templates, Genetic ; Viral Proteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2011-03-04
    Description: Chromosomal translocations are critically involved in the molecular pathogenesis of B-cell lymphomas, and highly recurrent and specific rearrangements have defined distinct molecular subtypes linked to unique clinicopathological features. In contrast, several well-characterized lymphoma entities still lack disease-defining translocation events. To identify novel fusion transcripts resulting from translocations, we investigated two Hodgkin lymphoma cell lines by whole-transcriptome paired-end sequencing (RNA-seq). Here we show a highly expressed gene fusion involving the major histocompatibility complex (MHC) class II transactivator CIITA (MHC2TA) in KM-H2 cells. In a subsequent evaluation of 263 B-cell lymphomas, we also demonstrate that genomic CIITA breaks are highly recurrent in primary mediastinal B-cell lymphoma (38%) and classical Hodgkin lymphoma (cHL) (15%). Furthermore, we find that CIITA is a promiscuous partner of various in-frame gene fusions, and we report that CIITA gene alterations impact survival in primary mediastinal B-cell lymphoma (PMBCL). As functional consequences of CIITA gene fusions, we identify downregulation of surface HLA class II expression and overexpression of ligands of the receptor molecule programmed cell death 1 (CD274/PDL1 and CD273/PDL2). These receptor-ligand interactions have been shown to impact anti-tumour immune responses in several cancers, whereas decreased MHC class II expression has been linked to reduced tumour cell immunogenicity. Thus, our findings suggest that recurrent rearrangements of CIITA may represent a novel genetic mechanism underlying tumour-microenvironment interactions across a spectrum of lymphoid cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902849/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902849/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Steidl, Christian -- Shah, Sohrab P -- Woolcock, Bruce W -- Rui, Lixin -- Kawahara, Masahiro -- Farinha, Pedro -- Johnson, Nathalie A -- Zhao, Yongjun -- Telenius, Adele -- Neriah, Susana Ben -- McPherson, Andrew -- Meissner, Barbara -- Okoye, Ujunwa C -- Diepstra, Arjan -- van den Berg, Anke -- Sun, Mark -- Leung, Gillian -- Jones, Steven J -- Connors, Joseph M -- Huntsman, David G -- Savage, Kerry J -- Rimsza, Lisa M -- Horsman, Douglas E -- Staudt, Louis M -- Steidl, Ulrich -- Marra, Marco A -- Gascoyne, Randy D -- 178536/Canadian Institutes of Health Research/Canada -- R00 CA131503/CA/NCI NIH HHS/ -- R00CA131503/CA/NCI NIH HHS/ -- T32 GM007288/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Mar 17;471(7338):377-81. doi: 10.1038/nature09754. Epub 2011 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, Centre for Lymphoid Cancers and the Centre for Translational and Applied Genomics, Vancouver, British Columbia, V5Z4E6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368758" target="_blank"〉PubMed〈/a〉
    Keywords: Antigens, CD/genetics/metabolism ; Antigens, CD274 ; Antigens, CD80/genetics/metabolism ; Base Sequence ; Cell Line, Tumor ; Chromosome Breakpoints ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Hodgkin Disease/genetics ; Humans ; In Situ Hybridization, Fluorescence ; Jurkat Cells ; Lymphocyte Activation ; Lymphoma, B-Cell/*genetics ; Molecular Sequence Data ; Nuclear Proteins/*genetics ; Oncogene Proteins, Fusion/*genetics ; Programmed Cell Death 1 Ligand 2 Protein ; RNA, Neoplasm/genetics ; T-Lymphocytes/immunology/metabolism/pathology ; Tissue Array Analysis ; Trans-Activators/*genetics ; Translocation, Genetic/*genetics ; Tumor Microenvironment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2012-03-27
    Description: The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins' in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 'Spanish' influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648786/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648786/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Everitt, Aaron R -- Clare, Simon -- Pertel, Thomas -- John, Sinu P -- Wash, Rachael S -- Smith, Sarah E -- Chin, Christopher R -- Feeley, Eric M -- Sims, Jennifer S -- Adams, David J -- Wise, Helen M -- Kane, Leanne -- Goulding, David -- Digard, Paul -- Anttila, Verneri -- Baillie, J Kenneth -- Walsh, Tim S -- Hume, David A -- Palotie, Aarno -- Xue, Yali -- Colonna, Vincenza -- Tyler-Smith, Chris -- Dunning, Jake -- Gordon, Stephen B -- GenISIS Investigators -- MOSAIC Investigators -- Smyth, Rosalind L -- Openshaw, Peter J -- Dougan, Gordon -- Brass, Abraham L -- Kellam, Paul -- 090382/Wellcome Trust/United Kingdom -- 090382/Z/09/Z/Wellcome Trust/United Kingdom -- 090385/Z/09/Z/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 13031/Cancer Research UK/United Kingdom -- DHCS/04/G121/68/Department of Health/United Kingdom -- G0600371/Medical Research Council/United Kingdom -- G0600511/Medical Research Council/United Kingdom -- G0800767/Medical Research Council/United Kingdom -- G0800777/Medical Research Council/United Kingdom -- G0802752/Medical Research Council/United Kingdom -- G0901697/Medical Research Council/United Kingdom -- G1000758/Medical Research Council/United Kingdom -- MC_G1001212/Medical Research Council/United Kingdom -- MC_U122785833/Medical Research Council/United Kingdom -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI091786/AI/NIAID NIH HHS/ -- R01AI091786/AI/NIAID NIH HHS/ -- Chief Scientist Office/United Kingdom -- Medical Research Council/United Kingdom -- England -- Nature. 2012 Mar 25;484(7395):519-23. doi: 10.1038/nature10921.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22446628" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Cytokines/immunology ; England/epidemiology ; Gene Deletion ; Humans ; Influenza A Virus, H1N1 Subtype/classification/growth & development/pathogenicity ; Influenza A Virus, H3N2 Subtype/classification/growth & development/pathogenicity ; Influenza A virus/classification/growth & development/*pathogenicity ; Influenza B virus/classification/growth & development/pathogenicity ; Influenza, Human/complications/epidemiology/mortality/virology ; Leukocytes/immunology ; Lung/pathology/virology ; Membrane Proteins/chemistry/deficiency/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Orthomyxoviridae Infections/complications/*mortality/pathology ; Pneumonia, Viral/etiology/pathology/prevention & control ; Polymorphism, Single Nucleotide/genetics ; RNA-Binding Proteins/chemistry/genetics/*metabolism ; Scotland/epidemiology ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2012-10-09
    Description: Genetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits, and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator-chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904217/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904217/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moon, Tae Seok -- Lou, Chunbo -- Tamsir, Alvin -- Stanton, Brynne C -- Voigt, Christopher A -- AI067699/AI/NIAID NIH HHS/ -- R01 GM095765/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Nov 8;491(7423):249-53. doi: 10.1038/nature11516. Epub 2012 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23041931" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; DNA-Binding Proteins/metabolism ; Directed Molecular Evolution ; Escherichia coli/*cytology/*genetics ; *Gene Expression Regulation, Bacterial ; Genomic Islands/genetics ; *Logic ; *Models, Genetic ; Molecular Chaperones/metabolism ; Molecular Sequence Data ; Promoter Regions, Genetic/genetics ; Pseudomonas/genetics ; Salmonella/genetics ; Shigella/genetics ; Single-Cell Analysis ; Synthetic Biology ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2012-03-09
    Description: Strigolactones were originally identified as stimulators of the germination of root-parasitic weeds that pose a serious threat to resource-limited agriculture. They are mostly exuded from roots and function as signalling compounds in the initiation of arbuscular mycorrhizae, which are plant-fungus symbionts with a global effect on carbon and phosphate cycling. Recently, strigolactones were established to be phytohormones that regulate plant shoot architecture by inhibiting the outgrowth of axillary buds. Despite their importance, it is not known how strigolactones are transported. ATP-binding cassette (ABC) transporters, however, are known to have functions in phytohormone translocation. Here we show that the Petunia hybrida ABC transporter PDR1 has a key role in regulating the development of arbuscular mycorrhizae and axillary branches, by functioning as a cellular strigolactone exporter. P. hybrida pdr1 mutants are defective in strigolactone exudation from their roots, resulting in reduced symbiotic interactions. Above ground, pdr1 mutants have an enhanced branching phenotype, which is indicative of impaired strigolactone allocation. Overexpression of Petunia axillaris PDR1 in Arabidopsis thaliana results in increased tolerance to high concentrations of a synthetic strigolactone, consistent with increased export of strigolactones from the roots. PDR1 is the first known component in strigolactone transport, providing new opportunities for investigating and manipulating strigolactone-dependent processes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kretzschmar, Tobias -- Kohlen, Wouter -- Sasse, Joelle -- Borghi, Lorenzo -- Schlegel, Markus -- Bachelier, Julien B -- Reinhardt, Didier -- Bours, Ralph -- Bouwmeester, Harro J -- Martinoia, Enrico -- England -- Nature. 2012 Mar 7;483(7389):341-4. doi: 10.1038/nature10873.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland. t.kretzschmar@irri.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22398443" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/genetics/*metabolism ; Abscisic Acid/pharmacology ; Arabidopsis/*drug effects/embryology/genetics/metabolism ; Gene Expression Regulation, Plant ; Germination ; Lactones/*pharmacology ; Molecular Sequence Data ; Mycorrhizae/drug effects ; Naphthaleneacetic Acids/pharmacology ; Petunia/genetics/*metabolism ; Phenotype ; Plant Growth Regulators/*pharmacology ; Plant Proteins/genetics/*metabolism ; Plant Roots/drug effects/metabolism/microbiology ; Signal Transduction/*drug effects ; Symbiosis/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2012-09-08
    Description: Hydrogels are used as scaffolds for tissue engineering, vehicles for drug delivery, actuators for optics and fluidics, and model extracellular matrices for biological studies. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels have achieved stretches in the range 10-20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m(-2) (ref. 8), as compared with approximately 1,000 J m(-2) for cartilage and approximately 10,000 J m(-2) for natural rubbers. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties; certain synthetic gels have reached fracture energies of 100-1,000 J m(-2) (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain approximately 90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of approximately 9,000 J m(-2). Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels' toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642868/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642868/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Jeong-Yun -- Zhao, Xuanhe -- Illeperuma, Widusha R K -- Chaudhuri, Ovijit -- Oh, Kyu Hwan -- Mooney, David J -- Vlassak, Joost J -- Suo, Zhigang -- R01 DE013033/DE/NIDCR NIH HHS/ -- R37 DE013033/DE/NIDCR NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):133-6. doi: 10.1038/nature11409.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955625" target="_blank"〉PubMed〈/a〉
    Keywords: Acrylic Resins/chemistry ; Alginates/chemistry ; Carbohydrate Sequence ; Elasticity ; Glucuronic Acid/chemistry ; Hexuronic Acids/chemistry ; Hydrogels/chemical synthesis/*chemistry ; Materials Testing ; Molecular Sequence Data ; Polymers/chemical synthesis/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2012-04-17
    Description: Plant innate immunity is activated on the detection of pathogen-associated molecular patterns (PAMPs) at the cell surface, or of pathogen effector proteins inside the plant cell. Together, PAMP-triggered immunity and effector-triggered immunity constitute powerful defences against various phytopathogens. Pathogenic bacteria inject a variety of effector proteins into the host cell to assist infection or propagation. A number of effector proteins have been shown to inhibit plant immunity, but the biochemical basis remains unknown for the vast majority of these effectors. Here we show that the Xanthomonas campestris pathovar campestris type III effector AvrAC enhances virulence and inhibits plant immunity by specifically targeting Arabidopsis BIK1 and RIPK, two receptor-like cytoplasmic kinases known to mediate immune signalling. AvrAC is a uridylyl transferase that adds uridine 5'-monophosphate to and conceals conserved phosphorylation sites in the activation loop of BIK1 and RIPK, reducing their kinase activity and consequently inhibiting downstream signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Feng -- Yang, Fan -- Rong, Wei -- Wu, Xiaogang -- Zhang, Jie -- Chen, She -- He, Chaozu -- Zhou, Jian-Min -- England -- Nature. 2012 Apr 15;485(7396):114-8. doi: 10.1038/nature10962.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Life Sciences, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504181" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/*enzymology/*immunology/microbiology ; Arabidopsis Proteins/*antagonists & inhibitors/chemistry/immunology/metabolism ; Bacterial Proteins/*metabolism ; Brassica/immunology/microbiology ; Molecular Sequence Data ; Phosphorylation ; Plant Diseases/immunology/microbiology ; *Plant Immunity/immunology ; Plants, Genetically Modified ; Protein Kinases/chemistry/immunology/metabolism ; Protein-Serine-Threonine Kinases/*antagonists & ; inhibitors/chemistry/immunology/metabolism ; Signal Transduction ; Virulence ; Xanthomonas campestris/*enzymology/immunology/pathogenicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2012-06-23
    Description: The RNA-induced silencing complex, comprising Argonaute and guide RNA, mediates RNA interference. Here we report the 3.2 A crystal structure of Kluyveromyces polysporus Argonaute (KpAGO) fortuitously complexed with guide RNA originating from small-RNA duplexes autonomously loaded by recombinant KpAGO. Despite their diverse sequences, guide-RNA nucleotides 1-8 are positioned similarly, with sequence-independent contacts to bases, phosphates and 2'-hydroxyl groups pre-organizing the backbone of nucleotides 2-8 in a near-A-form conformation. Compared with prokaryotic Argonautes, KpAGO has numerous surface-exposed insertion segments, with a cluster of conserved insertions repositioning the N domain to enable full propagation of guide-target pairing. Compared with Argonautes in inactive conformations, KpAGO has a hydrogen-bond network that stabilizes an expanded and repositioned loop, which inserts an invariant glutamate into the catalytic pocket. Mutation analyses and analogies to ribonuclease H indicate that insertion of this glutamate finger completes a universally conserved catalytic tetrad, thereby activating Argonaute for RNA cleavage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853139/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3853139/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nakanishi, Kotaro -- Weinberg, David E -- Bartel, David P -- Patel, Dinshaw J -- AI068776/AI/NIAID NIH HHS/ -- GM61835/GM/NIGMS NIH HHS/ -- R01 AI068776/AI/NIAID NIH HHS/ -- R01 GM061835/GM/NIGMS NIH HHS/ -- R37 GM061835/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 20;486(7403):368-74. doi: 10.1038/nature11211.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722195" target="_blank"〉PubMed〈/a〉
    Keywords: Argonaute Proteins/*chemistry/*metabolism ; Base Sequence ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Eukaryotic Cells/chemistry/enzymology ; Fungal Proteins/*chemistry/*metabolism ; Kluyveromyces/*chemistry/enzymology ; Models, Molecular ; Molecular Conformation ; Molecular Sequence Data ; RNA, Guide/*chemistry/genetics/*metabolism ; Saccharomycetales/enzymology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2012-05-25
    Description: Peroxisomes are eukaryotic organelles important for the metabolism of long-chain fatty acids. Here we show that in numerous fungal species, several core enzymes of glycolysis, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 3-phosphoglycerate kinase (PGK), reside in both the cytoplasm and peroxisomes. We detected in these enzymes cryptic type 1 peroxisomal targeting signals (PTS1), which are activated by post-transcriptional processes. Notably, the molecular mechanisms that generate the peroxisomal isoforms vary considerably among different species. In the basidiomycete plant pathogen Ustilago maydis, peroxisomal targeting of Pgk1 results from ribosomal read-through, whereas alternative splicing generates the PTS1 of Gapdh. In the filamentous ascomycete Aspergillus nidulans, peroxisomal targeting of these enzymes is achieved by exactly the opposite mechanisms. We also detected PTS1 motifs in the glycolytic enzymes triose-phosphate isomerase and fructose-bisphosphate aldolase. U. maydis mutants lacking the peroxisomal isoforms of Gapdh or Pgk1 showed reduced virulence. In addition, mutational analysis suggests that GAPDH, together with other peroxisomal NADH-dependent dehydrogenases, has a role in redox homeostasis. Owing to its hidden nature, partial peroxisomal targeting of well-studied cytoplasmic enzymes has remained undetected. Thus, we anticipate that further bona fide cytoplasmic proteins exhibit similar dual targeting.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Freitag, Johannes -- Ast, Julia -- Bolker, Michael -- England -- Nature. 2012 May 23;485(7399):522-5. doi: 10.1038/nature11051.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Philipps University Marburg, Karl-von-Frisch-Strasse 8, D-35032 Marburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22622582" target="_blank"〉PubMed〈/a〉
    Keywords: Alternative Splicing/*genetics ; Amino Acid Sequence ; Aspergillus nidulans/cytology/enzymology/metabolism/pathogenicity ; Base Sequence ; Codon, Terminator/*genetics ; Fungi/*cytology/*genetics/metabolism/pathogenicity ; Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry/genetics/metabolism ; Glycolysis ; Isoenzymes/chemistry/genetics/metabolism ; Molecular Sequence Data ; Peroxisomes/enzymology/*metabolism ; Phosphoglycerate Kinase/chemistry/genetics/metabolism ; Protein Sorting Signals/*genetics/physiology ; Protein Transport ; Ustilago/cytology/enzymology/growth & development/pathogenicity ; Virulence
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2012-11-13
    Description: Chromatin-remodelling complexes (CRCs) mobilize nucleosomes to mediate the access of DNA-binding factors to their sites in vivo. These CRCs contain a catalytic subunit that bears an ATPase/DNA-translocase domain and flanking regions that bind nucleosomal epitopes. A central question is whether and how these flanking regions regulate ATP hydrolysis or the coupling of hydrolysis to DNA translocation, to affect nucleosome-sliding efficiency. ISWI-family CRCs contain the protein ISWI, which uses its ATPase/DNA-translocase domain to pump DNA around the histone octamer to enable sliding. ISWI is positively regulated by two 'activating' nucleosomal epitopes: the 'basic patch' on the histone H4 tail, and extranucleosomal (linker) DNA. Previous work defined the HAND-SANT-SLIDE (HSS) domain at the ISWI carboxy terminus that binds linker DNA, needed for ISWI activity. Here we define two new, conserved and separate regulatory regions on Drosophila ISWI, termed AutoN and NegC, which negatively regulate ATP hydrolysis (AutoN) or the coupling of ATP hydrolysis to productive DNA translocation (NegC). The two aforementioned nucleosomal epitopes promote remodelling indirectly by preventing the negative regulation of AutoN and NegC. Notably, mutation or removal of AutoN and NegC enables marked nucleosome sliding without the H4 basic patch or extranucleosomal DNA, or the HSS domain, conferring on ISWI the biochemical attributes normally associated with SWI/SNF-family ATPases. Thus, the ISWI ATPase catalytic core is an intrinsically active DNA translocase that conducts nucleosome sliding, onto which selective 'inhibition-of-inhibition' modules are placed, to help ensure that remodelling occurs only in the presence of proper nucleosomal epitopes. This supports a general concept for the specialization of chromatin-remodelling ATPases, in which specific regulatory modules adapt an ancient active DNA translocase to conduct particular tasks only on the appropriate chromatin landscape.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631562/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631562/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clapier, Cedric R -- Cairns, Bradley R -- CA042014/CA/NCI NIH HHS/ -- GM60415/GM/NIGMS NIH HHS/ -- R01 GM060415/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 13;492(7428):280-4. doi: 10.1038/nature11625. Epub 2012 Nov 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA. cedric.clapier@hci.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23143334" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphatases/chemistry/*genetics/*metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Chromatin Assembly and Disassembly ; Drosophila Proteins/chemistry/genetics/metabolism ; Drosophila melanogaster/enzymology/*genetics/*metabolism ; Epitopes/*metabolism ; *Gene Expression Regulation ; Hydrolysis ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleosomes/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Regulatory Sequences, Nucleic Acid/genetics ; Sequence Alignment ; Transcription Factors/chemistry/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2012-06-16
    Description: The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711680/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711680/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Eun-Jin -- Groisman, Eduardo A -- AI49561/AI/NIAID NIH HHS/ -- R01 AI049561/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jun 13;486(7402):271-5. doi: 10.1038/nature11090.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Yale School of Medicine, Section of Microbial Pathogenesis, New Haven, Connecticut 06536-0812, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699622" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics/*physiology ; Adenosine Triphosphate/*metabolism ; Animals ; *Bacterial Proteins/genetics/metabolism ; Base Sequence ; *Cation Transport Proteins/genetics/metabolism ; Female ; Gene Expression Regulation, Bacterial ; Hydrogen-Ion Concentration ; Macrophages/microbiology ; Mice ; Mice, Inbred C3H ; Molecular Sequence Data ; Mutation/genetics ; Salmonella Infections/mortality/pathology ; Salmonella typhimurium/genetics/metabolism/*pathogenicity ; Sequence Alignment ; Virulence/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2012-06-09
    Description: Voltage-gated sodium (Na(v)) channels are essential for the rapid depolarization of nerve and muscle, and are important drug targets. Determination of the structures of Na(v) channels will shed light on ion channel mechanisms and facilitate potential clinical applications. A family of bacterial Na(v) channels, exemplified by the Na(+)-selective channel of bacteria (NaChBac), provides a useful model system for structure-function analysis. Here we report the crystal structure of Na(v)Rh, a NaChBac orthologue from the marine alphaproteobacterium HIMB114 (Rickettsiales sp. HIMB114; denoted Rh), at 3.05 A resolution. The channel comprises an asymmetric tetramer. The carbonyl oxygen atoms of Thr 178 and Leu 179 constitute an inner site within the selectivity filter where a hydrated Ca(2+) resides in the crystal structure. The outer mouth of the Na(+) selectivity filter, defined by Ser 181 and Glu 183, is closed, as is the activation gate at the intracellular side of the pore. The voltage sensors adopt a depolarized conformation in which all the gating charges are exposed to the extracellular environment. We propose that Na(v)Rh is in an 'inactivated' conformation. Comparison of Na(v)Rh with Na(v)Ab reveals considerable conformational rearrangements that may underlie the electromechanical coupling mechanism of voltage-gated channels.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3979295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Xu -- Ren, Wenlin -- DeCaen, Paul -- Yan, Chuangye -- Tao, Xiao -- Tang, Lin -- Wang, Jingjing -- Hasegawa, Kazuya -- Kumasaka, Takashi -- He, Jianhua -- Wang, Jiawei -- Clapham, David E -- Yan, Nieng -- P01 NS072040/NS/NINDS NIH HHS/ -- T32 HL007572/HL/NHLBI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 20;486(7401):130-4. doi: 10.1038/nature11054.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, Tsinghua University, Beijing 100084, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22678295" target="_blank"〉PubMed〈/a〉
    Keywords: Alphaproteobacteria/*chemistry ; Amino Acid Sequence ; Bacterial Proteins/*chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; HEK293 Cells ; Humans ; *Ion Channel Gating ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sodium Channels/*chemistry/metabolism ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2012-02-22
    Description: Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a approximately 1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297710/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3297710/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coste, Bertrand -- Xiao, Bailong -- Santos, Jose S -- Syeda, Ruhma -- Grandl, Jorg -- Spencer, Kathryn S -- Kim, Sung Eun -- Schmidt, Manuela -- Mathur, Jayanti -- Dubin, Adrienne E -- Montal, Mauricio -- Patapoutian, Ardem -- R01 DE022115/DE/NIDCR NIH HHS/ -- R01 DE022115-01/DE/NIDCR NIH HHS/ -- R01 DE022115-02/DE/NIDCR NIH HHS/ -- R01 GM049711/GM/NIGMS NIH HHS/ -- R01 NS046303/NS/NINDS NIH HHS/ -- R01 NS046303-09/NS/NINDS NIH HHS/ -- England -- Nature. 2012 Feb 19;483(7388):176-81. doi: 10.1038/nature10812.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343900" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drosophila Proteins/chemistry/genetics/metabolism ; Drosophila melanogaster ; Electric Conductivity ; HEK293 Cells ; HeLa Cells ; Humans ; *Ion Channel Gating ; Ion Channels/*chemistry/genetics/*metabolism ; Lipid Bilayers/chemistry/metabolism ; Mechanotransduction, Cellular/*physiology ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Porosity ; Protein Multimerization ; Protein Subunits/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2012-02-14
    Description: Menin is a tumour suppressor protein whose loss or inactivation causes multiple endocrine neoplasia 1 (MEN1), a hereditary autosomal dominant tumour syndrome that is characterized by tumorigenesis in multiple endocrine organs. Menin interacts with many proteins and is involved in a variety of cellular processes. Menin binds the JUN family transcription factor JUND and inhibits its transcriptional activity. Several MEN1 missense mutations disrupt the menin-JUND interaction, suggesting a correlation between the tumour-suppressor function of menin and its suppression of JUND-activated transcription. Menin also interacts with mixed lineage leukaemia protein 1 (MLL1), a histone H3 lysine 4 methyltransferase, and functions as an oncogenic cofactor to upregulate gene transcription and promote MLL1-fusion-protein-induced leukaemogenesis. A recent report on the tethering of MLL1 to chromatin binding factor lens epithelium-derived growth factor (LEDGF) by menin indicates that menin is a molecular adaptor coordinating the functions of multiple proteins. Despite its importance, how menin interacts with many distinct partners and regulates their functions remains poorly understood. Here we present the crystal structures of human menin in its free form and in complexes with MLL1 or with JUND, or with an MLL1-LEDGF heterodimer. These structures show that menin contains a deep pocket that binds short peptides of MLL1 or JUND in the same manner, but that it can have opposite effects on transcription. The menin-JUND interaction blocks JUN N-terminal kinase (JNK)-mediated JUND phosphorylation and suppresses JUND-induced transcription. In contrast, menin promotes gene transcription by binding the transcription activator MLL1 through the peptide pocket while still interacting with the chromatin-anchoring protein LEDGF at a distinct surface formed by both menin and MLL1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983792/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983792/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Jing -- Gurung, Buddha -- Wan, Bingbing -- Matkar, Smita -- Veniaminova, Natalia A -- Wan, Ke -- Merchant, Juanita L -- Hua, Xianxin -- Lei, Ming -- GM083015-01/GM/NIGMS NIH HHS/ -- R01 DK085121/DK/NIDDK NIH HHS/ -- R01-DK085121/DK/NIDDK NIH HHS/ -- R37 DK045729/DK/NIDDK NIH HHS/ -- R37-DK45729/DK/NIDDK NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 12;482(7386):542-6. doi: 10.1038/nature10806.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22327296" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Binding Sites ; Chromatin/metabolism ; Crystallography, X-Ray ; Fibroblasts ; HEK293 Cells ; Histone-Lysine N-Methyltransferase ; Humans ; Intercellular Signaling Peptides and Proteins/metabolism ; JNK Mitogen-Activated Protein Kinases/metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; Myeloid-Lymphoid Leukemia Protein/chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Multimerization ; Proto-Oncogene Proteins/*chemistry/*metabolism ; Proto-Oncogene Proteins c-jun/chemistry/*metabolism ; Structure-Activity Relationship ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2012-11-16
    Description: Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes approximately 98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Jinghe -- Ofek, Gilad -- Laub, Leo -- Louder, Mark K -- Doria-Rose, Nicole A -- Longo, Nancy S -- Imamichi, Hiromi -- Bailer, Robert T -- Chakrabarti, Bimal -- Sharma, Shailendra K -- Alam, S Munir -- Wang, Tao -- Yang, Yongping -- Zhang, Baoshan -- Migueles, Stephen A -- Wyatt, Richard -- Haynes, Barton F -- Kwong, Peter D -- Mascola, John R -- Connors, Mark -- HSN261200800001E/PHS HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):406-12. doi: 10.1038/nature11544. Epub 2012 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antibodies, Neutralizing/chemistry/*metabolism ; Antibody Specificity ; Cells, Cultured ; HEK293 Cells ; HIV Antibodies/chemistry/isolation & purification/*metabolism ; HIV Envelope Protein gp41/chemistry/*immunology ; HIV-1/*physiology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2012-10-23
    Description: Calcium ions (Ca(2+)) have an important role as secondary messengers in numerous signal transduction processes, and cells invest much energy in controlling and maintaining a steep gradient between intracellular ( approximately 0.1-micromolar) and extracellular ( approximately 2-millimolar) Ca(2+) concentrations. Calmodulin-stimulated calcium pumps, which include the plasma-membrane Ca(2+)-ATPases (PMCAs), are key regulators of intracellular Ca(2+) in eukaryotes. They contain a unique amino- or carboxy-terminal regulatory domain responsible for autoinhibition, and binding of calcium-loaded calmodulin to this domain releases autoinhibition and activates the pump. However, the structural basis for the activation mechanism is unknown and a key remaining question is how calmodulin-mediated PMCA regulation can cover both basal Ca(2+) levels in the nanomolar range as well as micromolar-range Ca(2+) transients generated by cell stimulation. Here we present an integrated study combining the determination of the high-resolution crystal structure of a PMCA regulatory-domain/calmodulin complex with in vivo characterization and biochemical, biophysical and bioinformatics data that provide mechanistic insights into a two-step PMCA activation mechanism mediated by calcium-loaded calmodulin. The structure shows the entire PMCA regulatory domain and reveals an unexpected 2:1 stoichiometry with two calcium-loaded calmodulin molecules binding to different sites on a long helix. A multifaceted characterization of the role of both sites leads to a general structural model for calmodulin-mediated regulation of PMCAs that allows stringent, highly responsive control of intracellular calcium in eukaryotes, making it possible to maintain a stable, basal level at a threshold Ca(2+) concentration, where steep activation occurs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tidow, Henning -- Poulsen, Lisbeth R -- Andreeva, Antonina -- Knudsen, Michael -- Hein, Kim L -- Wiuf, Carsten -- Palmgren, Michael G -- Nissen, Poul -- MC_U105192716/Medical Research Council/United Kingdom -- England -- Nature. 2012 Nov 15;491(7424):468-72. doi: 10.1038/nature11539. Epub 2012 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Aarhus University, Gustav Wieds Vej 10c, DK-8000 Aarhus C, Denmark.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23086147" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Arabidopsis/chemistry/enzymology/*metabolism ; Arabidopsis Proteins/*chemistry/genetics/*metabolism ; Binding Sites ; Calcium/*metabolism ; Calcium-Transporting ATPases/*chemistry/genetics/*metabolism ; Calmodulin/*chemistry/metabolism ; Enzyme Activation ; Eukaryota/*metabolism ; Intracellular Space/chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary ; Sequence Alignment
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2012-03-01
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Graves, Tina -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Buhay, Christian J -- Kremitzki, Colin -- Wang, Qiaoyan -- Shen, Hua -- Holder, Michael -- Villasana, Donna -- Nazareth, Lynne V -- Cree, Andrew -- Courtney, Laura -- Veizer, Joelle -- Kotkiewicz, Holland -- Cho, Ting-Jan -- Koutseva, Natalia -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- R01 HG000257-17/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;483(7387):82-6. doi: 10.1038/nature10843.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. jhughes@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Y/*genetics ; Conserved Sequence/*genetics ; Crossing Over, Genetic/genetics ; *Evolution, Molecular ; Gene Amplification/genetics ; *Gene Deletion ; Humans ; In Situ Hybridization, Fluorescence ; Macaca mulatta/*genetics ; Male ; Models, Genetic ; Molecular Sequence Data ; Pan troglodytes/genetics ; Radiation Hybrid Mapping ; Selection, Genetic/genetics ; Time Factors ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2012-06-05
    Description: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378239/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3378239/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomato Genome Consortium -- BB/C509731/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G006199/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G02491X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2012 May 30;485(7400):635-41. doi: 10.1038/nature11119.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22660326" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics ; *Evolution, Molecular ; Genetic Variation/genetics ; Genome, Plant/*genetics ; Genomics ; Lycopersicon esculentum/*genetics/physiology ; Molecular Sequence Data ; Phylogeny ; RNA, Plant/genetics ; Sequence Analysis, DNA ; Solanum tuberosum/genetics ; Soybeans/genetics ; Synteny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2012-03-13
    Description: Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system. Therefore, bacteria must modulate host inflammatory signalling and dampen these alarm signals. How pathogens do this after invading epithelial cells remains unclear, however. Here we show that OspI, a Shigella flexneri effector encoded by ORF169b on the large plasmid and delivered by the type IotaIotaIota secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumour-necrosis factor (TNF)-receptor-associated factor 6 (TRAF6)-mediated signalling pathway. OspI is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing S. flexneri OspI to modulate the diacylglycerol-CBM (CARD-BCL10-MALT1) complex-TRAF6-nuclear-factor-kappaB signalling pathway. We determined the 2.0 A crystal structure of OspI, which contains a putative cysteine-histidine-aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. Our results suggest that S. flexneri inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13-TRAF6 complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanada, Takahito -- Kim, Minsoo -- Mimuro, Hitomi -- Suzuki, Masato -- Ogawa, Michinaga -- Oyama, Akiho -- Ashida, Hiroshi -- Kobayashi, Taira -- Koyama, Tomohiro -- Nagai, Shinya -- Shibata, Yuri -- Gohda, Jin -- Inoue, Jun-ichiro -- Mizushima, Tsunehiro -- Sasakawa, Chihiro -- England -- Nature. 2012 Mar 11;483(7391):623-6. doi: 10.1038/nature10894.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Infectious Disease Control, International Research Center for Infectious Diseases, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22407319" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptor Proteins, Signal Transducing/metabolism ; Amidohydrolases/*chemistry/genetics/*metabolism ; Amino Acid Sequence ; Animals ; Aspartic Acid/metabolism ; Biocatalysis ; Caspases/metabolism ; Catalytic Domain/genetics ; Crystallography, X-Ray ; Cysteine/metabolism ; DNA Mutational Analysis ; Diglycerides/antagonists & inhibitors/metabolism ; Dysentery, Bacillary/microbiology ; Glutamic Acid/metabolism ; Glutamine/metabolism ; HEK293 Cells ; HeLa Cells ; Histidine/metabolism ; Humans ; Immunity, Innate ; Inflammation/enzymology/*immunology/*metabolism ; Mice ; Models, Molecular ; Molecular Sequence Data ; NF-kappa B/metabolism ; Neoplasm Proteins/metabolism ; Shigella flexneri/*enzymology/genetics/*immunology/pathogenicity ; TNF Receptor-Associated Factor 6/deficiency/genetics/metabolism ; Ubiquitin-Conjugating Enzymes/chemistry/genetics/*metabolism ; Virulence Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2012-12-04
    Description: Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have 〉21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Curtis, Bruce A -- Tanifuji, Goro -- Burki, Fabien -- Gruber, Ansgar -- Irimia, Manuel -- Maruyama, Shinichiro -- Arias, Maria C -- Ball, Steven G -- Gile, Gillian H -- Hirakawa, Yoshihisa -- Hopkins, Julia F -- Kuo, Alan -- Rensing, Stefan A -- Schmutz, Jeremy -- Symeonidi, Aikaterini -- Elias, Marek -- Eveleigh, Robert J M -- Herman, Emily K -- Klute, Mary J -- Nakayama, Takuro -- Obornik, Miroslav -- Reyes-Prieto, Adrian -- Armbrust, E Virginia -- Aves, Stephen J -- Beiko, Robert G -- Coutinho, Pedro -- Dacks, Joel B -- Durnford, Dion G -- Fast, Naomi M -- Green, Beverley R -- Grisdale, Cameron J -- Hempel, Franziska -- Henrissat, Bernard -- Hoppner, Marc P -- Ishida, Ken-Ichiro -- Kim, Eunsoo -- Koreny, Ludek -- Kroth, Peter G -- Liu, Yuan -- Malik, Shehre-Banoo -- Maier, Uwe G -- McRose, Darcy -- Mock, Thomas -- Neilson, Jonathan A D -- Onodera, Naoko T -- Poole, Anthony M -- Pritham, Ellen J -- Richards, Thomas A -- Rocap, Gabrielle -- Roy, Scott W -- Sarai, Chihiro -- Schaack, Sarah -- Shirato, Shu -- Slamovits, Claudio H -- Spencer, David F -- Suzuki, Shigekatsu -- Worden, Alexandra Z -- Zauner, Stefan -- Barry, Kerrie -- Bell, Callum -- Bharti, Arvind K -- Crow, John A -- Grimwood, Jane -- Kramer, Robin -- Lindquist, Erika -- Lucas, Susan -- Salamov, Asaf -- McFadden, Geoffrey I -- Lane, Christopher E -- Keeling, Patrick J -- Gray, Michael W -- Grigoriev, Igor V -- Archibald, John M -- BB/G00885X/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 6;492(7427):59-65. doi: 10.1038/nature11681. Epub 2012 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201678" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/genetics/metabolism ; Alternative Splicing/genetics ; Cell Nucleus/*genetics ; Cercozoa/cytology/*genetics/metabolism ; Cryptophyta/cytology/*genetics/metabolism ; Cytosol/metabolism ; *Evolution, Molecular ; Gene Duplication/genetics ; Gene Transfer, Horizontal/genetics ; Genes, Essential/genetics ; Genome/*genetics ; Genome, Mitochondrial/genetics ; Genome, Plant/genetics ; Genome, Plastid/genetics ; Molecular Sequence Data ; *Mosaicism ; Phylogeny ; Protein Transport ; Proteome/genetics/metabolism ; Symbiosis/*genetics ; Transcriptome/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2012-04-17
    Description: As with many other viruses, the initial cell attachment of rotaviruses, which are the major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans. The distally located VP8* domain of the rotavirus spike protein VP4 (ref. 5) mediates such interactions. The existing paradigm is that 'sialidase-sensitive' animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas 'sialidase-insensitive' human rotavirus strains bind to glycans with internal Sia such as GM1 (ref. 3). Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies, it is not yet known how VP8* of human rotaviruses interacts with Sia and whether their cell attachment necessarily involves sialoglycans. Here we show that VP8* of a human rotavirus strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-A-type antibodies as well as significantly enhanced in Chinese hamster ovary cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of human rotavirus. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelia and on red blood cells, and are recognized as susceptibility and cell attachment factors for gastric pathogens like Helicobacter pylori and noroviruses. Our crystallographic studies show that the A-type HBGA binds to the human rotavirus VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific human rotavirus strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world's population.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3350622/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Liya -- Crawford, Sue E -- Czako, Rita -- Cortes-Penfield, Nicolas W -- Smith, David F -- Le Pendu, Jacques -- Estes, Mary K -- Prasad, B V Venkataram -- AI 080656/AI/NIAID NIH HHS/ -- AI36040/AI/NIAID NIH HHS/ -- GM62116/GM/NIGMS NIH HHS/ -- P30 DK056338/DK/NIDDK NIH HHS/ -- P30 DK56338/DK/NIDDK NIH HHS/ -- P41 GM103694/GM/NIGMS NIH HHS/ -- R01 AI080656/AI/NIAID NIH HHS/ -- U54 GM062116/GM/NIGMS NIH HHS/ -- U54 GM062116-01A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 15;485(7397):256-9. doi: 10.1038/nature10996.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22504179" target="_blank"〉PubMed〈/a〉
    Keywords: ABO Blood-Group System/chemistry/genetics/immunology/*metabolism ; Amino Acid Sequence ; Animals ; CHO Cells ; Cricetinae ; Crystallography, X-Ray ; Erythrocytes/metabolism/virology ; Host Specificity/*physiology ; Humans ; Models, Molecular ; Molecular Sequence Data ; N-Acetylneuraminic Acid/antagonists & inhibitors/chemistry/immunology/metabolism ; RNA-Binding Proteins/chemistry/*metabolism ; Receptors, Virus/chemistry/genetics/*metabolism ; *Rotavirus/chemistry/classification/metabolism/pathogenicity ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2012-07-18
    Description: Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon-eudicotyledon divergence.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉D'Hont, Angelique -- Denoeud, France -- Aury, Jean-Marc -- Baurens, Franc-Christophe -- Carreel, Francoise -- Garsmeur, Olivier -- Noel, Benjamin -- Bocs, Stephanie -- Droc, Gaetan -- Rouard, Mathieu -- Da Silva, Corinne -- Jabbari, Kamel -- Cardi, Celine -- Poulain, Julie -- Souquet, Marlene -- Labadie, Karine -- Jourda, Cyril -- Lengelle, Juliette -- Rodier-Goud, Marguerite -- Alberti, Adriana -- Bernard, Maria -- Correa, Margot -- Ayyampalayam, Saravanaraj -- Mckain, Michael R -- Leebens-Mack, Jim -- Burgess, Diane -- Freeling, Mike -- Mbeguie-A-Mbeguie, Didier -- Chabannes, Matthieu -- Wicker, Thomas -- Panaud, Olivier -- Barbosa, Jose -- Hribova, Eva -- Heslop-Harrison, Pat -- Habas, Remy -- Rivallan, Ronan -- Francois, Philippe -- Poiron, Claire -- Kilian, Andrzej -- Burthia, Dheema -- Jenny, Christophe -- Bakry, Frederic -- Brown, Spencer -- Guignon, Valentin -- Kema, Gert -- Dita, Miguel -- Waalwijk, Cees -- Joseph, Steeve -- Dievart, Anne -- Jaillon, Olivier -- Leclercq, Julie -- Argout, Xavier -- Lyons, Eric -- Almeida, Ana -- Jeridi, Mouna -- Dolezel, Jaroslav -- Roux, Nicolas -- Risterucci, Ange-Marie -- Weissenbach, Jean -- Ruiz, Manuel -- Glaszmann, Jean-Christophe -- Quetier, Francis -- Yahiaoui, Nabila -- Wincker, Patrick -- England -- Nature. 2012 Aug 9;488(7410):213-7. doi: 10.1038/nature11241.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de cooperation Internationale en Recherche Agronomique pour le Developpement, UMR AGAP, F-34398 Montpellier, France. angelique.d'hont@cirad.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801500" target="_blank"〉PubMed〈/a〉
    Keywords: Conserved Sequence/genetics ; DNA Transposable Elements/genetics ; *Evolution, Molecular ; Gene Duplication/genetics ; Genes, Plant/genetics ; Genome, Plant/*genetics ; Genotype ; Haploidy ; Molecular Sequence Data ; Musa/classification/*genetics ; Phylogeny
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2012-11-16
    Description: For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566564/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Groenen, Martien A M -- Archibald, Alan L -- Uenishi, Hirohide -- Tuggle, Christopher K -- Takeuchi, Yasuhiro -- Rothschild, Max F -- Rogel-Gaillard, Claire -- Park, Chankyu -- Milan, Denis -- Megens, Hendrik-Jan -- Li, Shengting -- Larkin, Denis M -- Kim, Heebal -- Frantz, Laurent A F -- Caccamo, Mario -- Ahn, Hyeonju -- Aken, Bronwen L -- Anselmo, Anna -- Anthon, Christian -- Auvil, Loretta -- Badaoui, Bouabid -- Beattie, Craig W -- Bendixen, Christian -- Berman, Daniel -- Blecha, Frank -- Blomberg, Jonas -- Bolund, Lars -- Bosse, Mirte -- Botti, Sara -- Bujie, Zhan -- Bystrom, Megan -- Capitanu, Boris -- Carvalho-Silva, Denise -- Chardon, Patrick -- Chen, Celine -- Cheng, Ryan -- Choi, Sang-Haeng -- Chow, William -- Clark, Richard C -- Clee, Christopher -- Crooijmans, Richard P M A -- Dawson, Harry D -- Dehais, Patrice -- De Sapio, Fioravante -- Dibbits, Bert -- Drou, Nizar -- Du, Zhi-Qiang -- Eversole, Kellye -- Fadista, Joao -- Fairley, Susan -- Faraut, Thomas -- Faulkner, Geoffrey J -- Fowler, Katie E -- Fredholm, Merete -- Fritz, Eric -- Gilbert, James G R -- Giuffra, Elisabetta -- Gorodkin, Jan -- Griffin, Darren K -- Harrow, Jennifer L -- Hayward, Alexander -- Howe, Kerstin -- Hu, Zhi-Liang -- Humphray, Sean J -- Hunt, Toby -- Hornshoj, Henrik -- Jeon, Jin-Tae -- Jern, Patric -- Jones, Matthew -- Jurka, Jerzy -- Kanamori, Hiroyuki -- Kapetanovic, Ronan -- Kim, Jaebum -- Kim, Jae-Hwan -- Kim, Kyu-Won -- Kim, Tae-Hun -- Larson, Greger -- Lee, Kyooyeol -- Lee, Kyung-Tai -- Leggett, Richard -- Lewin, Harris A -- Li, Yingrui -- Liu, Wansheng -- Loveland, Jane E -- Lu, Yao -- Lunney, Joan K -- Ma, Jian -- Madsen, Ole -- Mann, Katherine -- Matthews, Lucy -- McLaren, Stuart -- Morozumi, Takeya -- Murtaugh, Michael P -- Narayan, Jitendra -- Nguyen, Dinh Truong -- Ni, Peixiang -- Oh, Song-Jung -- Onteru, Suneel -- Panitz, Frank -- Park, Eung-Woo -- Park, Hong-Seog -- Pascal, Geraldine -- Paudel, Yogesh -- Perez-Enciso, Miguel -- Ramirez-Gonzalez, Ricardo -- Reecy, James M -- Rodriguez-Zas, Sandra -- Rohrer, Gary A -- Rund, Lauretta -- Sang, Yongming -- Schachtschneider, Kyle -- Schraiber, Joshua G -- Schwartz, John -- Scobie, Linda -- Scott, Carol -- Searle, Stephen -- Servin, Bertrand -- Southey, Bruce R -- Sperber, Goran -- Stadler, Peter -- Sweedler, Jonathan V -- Tafer, Hakim -- Thomsen, Bo -- Wali, Rashmi -- Wang, Jian -- Wang, Jun -- White, Simon -- Xu, Xun -- Yerle, Martine -- Zhang, Guojie -- Zhang, Jianguo -- Zhang, Jie -- Zhao, Shuhong -- Rogers, Jane -- Churcher, Carol -- Schook, Lawrence B -- 095908/Wellcome Trust/United Kingdom -- 249894/European Research Council/International -- 5 P41 LM006252/LM/NLM NIH HHS/ -- 5 P41LM006252/LM/NLM NIH HHS/ -- BB/E010520/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010520/2/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E010768/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E011640/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/G004013/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H005935/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/I025328/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0900950/Medical Research Council/United Kingdom -- P20-RR017686/RR/NCRR NIH HHS/ -- P30 DA018310/DA/NIDA NIH HHS/ -- R13 RR020283A/RR/NCRR NIH HHS/ -- R13 RR032267A/RR/NCRR NIH HHS/ -- R21 DA027548/DA/NIDA NIH HHS/ -- R21 HG006464/HG/NHGRI NIH HHS/ -- T32 AI083196/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):393-8. doi: 10.1038/nature11622.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Animal Breeding and Genomics Centre, Wageningen University, De Elst 1, 6708 WD, Wageningen, The Netherlands. martien.groenen@wur.nl〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151582" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Demography ; Genome/*genetics ; Models, Animal ; Molecular Sequence Data ; *Phylogeny ; Population Dynamics ; Sus scrofa/*classification/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2012-10-23
    Description: In human cells, cytosolic citrate is a chief precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein. Cytosolic citrate further regulates the energy balance of the cell by activating the fatty-acid-synthesis pathway while downregulating both the glycolysis and fatty-acid beta-oxidation pathways. The rate of fatty-acid synthesis in liver and adipose cells, the two main tissue types for such synthesis, correlates directly with the concentration of citrate in the cytosol, with the cytosolic citrate concentration partially depending on direct import across the plasma membrane through the Na(+)-dependent citrate transporter (NaCT). Mutations of the homologous fly gene (Indy; I'm not dead yet) result in reduced fat storage through calorie restriction. More recently, Nact (also known as Slc13a5)-knockout mice have been found to have increased hepatic mitochondrial biogenesis, higher lipid oxidation and energy expenditure, and reduced lipogenesis, which taken together protect the mice from obesity and insulin resistance. To understand the transport mechanism of NaCT and INDY proteins, here we report the 3.2 A crystal structure of a bacterial INDY homologue. One citrate molecule and one sodium ion are bound per protein, and their binding sites are defined by conserved amino acid motifs, forming the structural basis for understanding the specificity of the transporter. Comparison of the structures of the two symmetrical halves of the transporter suggests conformational changes that propel substrate translocation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617922/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617922/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mancusso, Romina -- Gregorio, G Glenn -- Liu, Qun -- Wang, Da-Neng -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 DK053973/DK/NIDDK NIH HHS/ -- R01 GM093825/GM/NIGMS NIH HHS/ -- R01 MH083840/MH/NIMH NIH HHS/ -- R01-DK073973/DK/NIDDK NIH HHS/ -- R01-GM093825/GM/NIGMS NIH HHS/ -- R01-MH083840/MH/NIMH NIH HHS/ -- U54 GM075026/GM/NIGMS NIH HHS/ -- U54-GM075026/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Nov 22;491(7425):622-6. doi: 10.1038/nature11542. Epub 2012 Oct 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23086149" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Binding Sites ; Citric Acid/chemistry/metabolism ; Crystallography, X-Ray ; Dicarboxylic Acid Transporters/*chemistry/*metabolism ; Ion Transport ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Sodium/chemistry/metabolism ; Structural Homology, Protein ; Structure-Activity Relationship ; Vibrio cholerae/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...