ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Chemical Society  (2,084,048)
Collection
Years
  • 11
    Publication Date: 2022-05-26
    Description: © The American Chemical Society, 2016. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Analytical Chemistry 88 (2016): 7154–7162, doi:10.1021/acs.analchem.6b01260.
    Description: Discovery and identification of molecular biomarkers in large LC/MS data sets requires significant automation without loss of accuracy in the compound screening and annotation process. Here, we describe a lipidomics workflow and open-source software package for high-throughput annotation and putative identification of lipid, oxidized lipid, and oxylipin biomarkers in high-mass-accuracy HPLC-MS data. Lipid and oxylipin biomarker screening through adduct hierarchy sequences, or LOBSTAHS, uses orthogonal screening criteria based on adduct ion formation patterns and other properties to identify thousands of compounds while providing the user with a confidence score for each assignment. Assignments are made from one of two customizable databases; the default databases contain 14 068 unique entries. To demonstrate the software’s functionality, we screened more than 340 000 mass spectral features from an experiment in which hydrogen peroxide was used to induce oxidative stress in the marine diatom Phaeodactylum tricornutum. LOBSTAHS putatively identified 1969 unique parent compounds in 21 869 features that survived the multistage screening process. While P. tricornutum maintained more than 92% of its core lipidome under oxidative stress, patterns in biomarker distribution and abundance indicated remodeling was both subtle and pervasive. Treatment with 150 μM H2O2 promoted statistically significant carbon-chain elongation across lipid classes, with the strongest elongation accompanying oxidation in moieties of monogalactosyldiacylglycerol, a lipid typically localized to the chloroplast. Oxidative stress also induced a pronounced reallocation of lipidome peak area to triacylglycerols. LOBSTAHS can be used with environmental or experimental data from a variety of systems and is freely available at https://github.com/vanmooylipidomics/LOBSTAHS.
    Description: This research was supported by the Gordon and Betty Moore Foundation through Grant GBMF3301 to B.A.S.V.M. This research was also funded in part by a grant to B.A.S.V.M. from the Simons Foundation and is a contribution of the Simons Collaboration on Ocean Processes and Ecology (SCOPE). J.R.C. acknowledges support from a U.S. Environmental Protection Agency (EPA) STAR Graduate Fellowship (Fellowship Assistance Agreement No. FP-91744301-0).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This article is posted here by permission of American Chemical Society for personal use, not for redistribution. The definitive version was published in Kivenson, V., Lemkau, K. L., Pizarro, O., Yoerger, D. R., Kaiser, C., Nelson, R. K., Carmichael, C., Paul, B. G., Reddy, C. M., & Valentine, D. L. (2019). Ocean Dumping of Containerized DDT Waste Was a Sloppy Process. Environmental Science and Technology (2019), doi:10.1021/acs.est.8b05859.
    Description: Industrial-scale dumping of organic waste to the deep ocean was once common practice, leaving a legacy of chemical pollution for which a paucity of information exists. Using a nested approach with autonomous and remotely operated underwater vehicles, a dumpsite offshore California was surveyed and sampled. Discarded waste containers littered the site and structured the suboxic benthic environment. Dichlorodiphenyltrichloroethane (DDT) was reportedly dumped in the area, and sediment analysis revealed substantial variability in concentrations of p,p-DDT and its analogs, with a peak concentration of 257 μg g–1, ∼40 times greater than the highest level of surface sediment contamination at the nearby DDT Superfund site. The occurrence of a conspicuous hydrocarbon mixture suggests that multiple petroleum distillates, potentially used in DDT manufacture, contributed to the waste stream. Application of a two end-member mixing model with DDTs and polychlorinated biphenyls enabled source differentiation between shelf discharge versus containerized waste. Ocean dumping was found to be the major source of DDT to more than 3000 km2 of the region’s deep seafloor. These results reveal that ocean dumping of containerized DDT waste was inherently sloppy, with the contents readily breaching containment and leading to regional scale contamination of the deep benthos.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship for V.K. under Grant No. 1650114. Expeditions AT-18-11 and AT-26-06 were funded by the NSF (OCE-0961725 and OCE-1046144). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We thank the captain and crew of the RV Atlantis, the pilots and crew of the ROV Jason, the crew of the AUV Sentry, the scientific party of the AT-18-11 and AT-26-06 expeditions, Justin Tran for assistance with the preparation of multibeam data, M. Indira Venkatesan for a helpful discussion of the NOAA datasets, and Nathan Dodder for advice on the procedure for compound identification.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2011. This article is posted here by permission of American Chemical Society for personal use, not for redistribution. The definitive version was published in Environmental Science and Technology 45 (2011): 9931–9935, doi:10.1021/es202816c.
    Description: The impacts on the ocean of releases of radionuclides from the Fukushima Dai-ichi nuclear power plants remain unclear. However, information has been made public regarding the concentrations of radioactive isotopes of iodine and cesium in ocean water near the discharge point. These data allow us to draw some basic conclusions about the relative levels of radionuclides released which can be compared to prior ocean studies and be used to address dose consequences as discussed by Garnier-Laplace et al. in this journal.(1) The data show peak ocean discharges in early April, one month after the earthquake and a factor of 1000 decrease in the month following. Interestingly, the concentrations through the end of July remain higher than expected implying continued releases from the reactors or other contaminated sources, such as groundwater or coastal sediments. By July, levels of 137Cs are still more than 10 000 times higher than levels measured in 2010 in the coastal waters off Japan. Although some radionuclides are significantly elevated, dose calculations suggest minimal impact on marine biota or humans due to direct exposure in surrounding ocean waters, though considerations for biological uptake and consumption of seafood are discussed and further study is warranted.
    Description: Funding for this work to KOB is from the Gordon and Betty Moore Foundation as well as the Chemical Oceanography Program of the US National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology 53(16), (2019): 9398-9406, doi:10.1021/acs.est.9b02395.
    Description: Geochemical data from 40 water wells were used to examine the occurrence and sources of radium (Ra) in groundwater associated with three oil fields in California (Fruitvale, Lost Hills, South Belridge). 226Ra+228Ra activities (range = 0.010–0.51 Bq/L) exceeded the 0.185 Bq/L drinking-water standard in 18% of the wells (not drinking-water wells). Radium activities were correlated with TDS concentrations (p 〈 0.001, ρ = 0.90, range = 145–15,900 mg/L), Mn + Fe concentrations (p 〈 0.001, ρ = 0.82, range = 〈0.005–18.5 mg/L), and pH (p 〈 0.001, ρ = −0.67, range = 6.2–9.2), indicating Ra in groundwater was influenced by salinity, redox, and pH. Ra-rich groundwater was mixed with up to 45% oil-field water at some locations, primarily infiltrating through unlined disposal ponds, based on Cl, Li, noble-gas, and other data. Yet 228Ra/226Ra ratios in pond-impacted groundwater (median = 3.1) differed from those in oil-field water (median = 0.51). PHREEQC mixing calculations and spatial geochemical variations suggest that the Ra in the oil-field water was removed by coprecipitation with secondary barite and adsorption on Mn–Fe precipitates in the near-pond environment. The saline, organic-rich oil-field water subsequently mobilized Ra from downgradient aquifer sediments via Ra-desorption and Mn/Fe-reduction processes. This study demonstrates that infiltration of oil-field water may leach Ra into groundwater by changing salinity and redox conditions in the subsurface rather than by mixing with a high-Ra source.
    Description: This article was improved by the reviews of John Izbicki and anonymous reviewers for the journal. This work was funded by the California State Water Resources Control Board’s Regional Groundwater Monitoring in Areas of Oil and Gas Production Program and the USGS Cooperative Water Program. A.V., A.J.K., and Z.W were supported by USDA-NIFA grant (#2017-68007-26308). Any use of trade, firm, or product names is for description purposes only and does not imply endorsement by the U.S. Government.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in McLean, C., & Kujawinski, E. B. AutoTuner: high fidelity and robust parameter selection for metabolomics data processing. Analytical Chemistry, 92(8), (2020): 5724-5732, doi:10.1021/acs.analchem.9b04804.
    Description: Untargeted metabolomics experiments provide a snapshot of cellular metabolism but remain challenging to interpret due to the computational complexity involved in data processing and analysis. Prior to any interpretation, raw data must be processed to remove noise and to align mass-spectral peaks across samples. This step requires selection of dataset-specific parameters, as erroneous parameters can result in noise inflation. While several algorithms exist to automate parameter selection, each depends on gradient descent optimization functions. In contrast, our new parameter optimization algorithm, AutoTuner, obtains parameter estimates from raw data in a single step as opposed to many iterations. Here, we tested the accuracy and the run-time of AutoTuner in comparison to isotopologue parameter optimization (IPO), the most commonly used parameter selection tool, and compared the resulting parameters’ influence on the properties of feature tables after processing. We performed a Monte Carlo experiment to test the robustness of AutoTuner parameter selection and found that AutoTuner generated similar parameter estimates from random subsets of samples. We conclude that AutoTuner is a desirable alternative to existing tools, because it is scalable, highly robust, and very fast (∼100–1000× speed improvement from other algorithms going from days to minutes). AutoTuner is freely available as an R package through BioConductor.
    Description: We thank Titus Brown and Ben Temperton for advice on the algorithm validation, Arthur Eschenlauer for constructive feedback on the software design, Krista Longnecker for continuous support and discussions, Gabriel Leventhal for mathematics advice, the users of AutoTuner for debugging help through Github, and David Angeles-Albores and two anonymous reviewers for critical feedback on the manuscript. Funding support included the National GEM Consortium and NSF graduate research program fellowships (C.M.) and grants from the MIT Microbiome Center (Award 6936800, E.B.K.) and the Simons Foundation (Award ID #509034, E.B.K.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.
    Description: The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
    Description: This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: Author Posting. © American Chemical Society, 2019. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Environmental Science and Technology 53(14), (2019):8244-8251, doi:10.1021/acs.est.9b02344.
    Description: Perylene is a frequently abundant, and sometimes the only polycyclic aromatic hydrocarbon (PAH) in aquatic sediments, but its origin has been subject of a longstanding debate in geochemical research and pollutant forensics because its historical record differs markedly from typical anthropogenic PAHs. Here we investigate whether perylene serves as a source-specific molecular marker of fungal activity in forest soils. We use a well-characterized sedimentary record (1735 to 1999) from the anoxic-bottom waters of the Pettaquamscutt River basin, RI, USA to examine mass accumulation rates and isotope records of perylene, and compare them with total organic carbon and the anthropogenic PAH fluoranthene. We support our arguments with radiocarbon (14C) data of higher plant leaf-wax n-alkanoic acids. Isotope-mass balance calculations of perylene and n-alkanoic acids indicate that ~40 % of sedimentary organic matter is of terrestrial origin. Further, both terrestrial markers are pre-aged on millennial time-scales prior to burial in sediments and insensitive to elevated 14C concentrations following nuclear weapons testing in the mid-20th Century. Instead, changes coincide with enhanced erosional flux during urban sprawl. These findings suggest that perylene is definitely a product of soil derived fungi, and a powerful chemical tracer to study spatial and temporal connectivity between terrestrial and aquatic environments.
    Description: We thank John King, Sean Sylva, Brad Hubeny, Peter Sauer, and Jim Broda for their help in sampling; Carl Johnson and Daniel Montluçon for their incessant help with analyses; as well as Mark Yunker for critical discussion on the perils of perylene. Professor Phil Meyers and two anonymous reviewers provided comments that improved the quality of the manuscript. U.M.H. acknowledges the Swiss National Science Foundation for his postdoctoral fellowship and T.I.E. and K.A.H. acknowledges the NSF for research grants CHE-0089172 and OCE-9708478.
    Description: 2020-06-19
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: © American Chemical Society, 2016. This article is distributed under the terms of the AuthorsChoice License. The definitive version was published in Environmental Science & Technology 50 (2016): 7397–7408, doi:10.1021/acs.est.5b04617.
    Description: With the expansion of offshore petroleum extraction, validated models are needed to simulate the behaviors of petroleum compounds released in deep (〉100 m) waters. We present a thermodynamic model of the densities, viscosities, and gas–liquid−water partitioning of petroleum mixtures with varying pressure, temperature, and composition based on the Peng–Robinson equation-of-state and the modified Henry’s law (Krychevsky−Kasarnovsky equation). The model is applied to Macondo reservoir fluid released during the Deepwater Horizon disaster, represented with 279–280 pseudocomponents, including 131–132 individual compounds. We define 〉n-C8 pseudocomponents based on comprehensive two-dimensional gas chromatography (GC × GC) measurements, which enable the modeling of aqueous partitioning for n-C8 to n-C26 fractions not quantified individually. Thermodynamic model predictions are tested against available laboratory data on petroleum liquid densities, gas/liquid volume fractions, and liquid viscosities. We find that the emitted petroleum mixture was ∼29–44% gas and ∼56–71% liquid, after cooling to local conditions near the broken Macondo riser stub (∼153 atm and 4.3 °C). High pressure conditions dramatically favor the aqueous dissolution of C1−C4 hydrocarbons and also influence the buoyancies of bubbles and droplets. Additionally, the simulated densities of emitted petroleum fluids affect previous estimates of the volumetric flow rate of dead oil from the emission source.
    Description: This research was made possible by grants from the NSF (OCE- 0960841, OCE-1043976, and EAR-0950600) and the Gulf of Mexico Research Initiative (GoMRI) to the C-IMAGE and DEEP-C consortia.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Widner, B., Kido Soule, M. C., Ferrer-González, F. X., Moran, M. A., & Kujawinski, E. B. Quantification of amine- and alcohol-containing metabolites in saline samples using pre-extraction benzoyl chloride derivatization and ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC MS/MS). Analytical Chemistry, 93(11), (2021): 4809-4817, https://doi.org/10.1021/acs.analchem.0c03769.
    Description: Dissolved metabolites serve as nutrition, energy, and chemical signals for microbial systems. However, the full scope and magnitude of these processes in marine systems are unknown, largely due to insufficient methods, including poor extraction of small, polar compounds using common solid-phase extraction resins. Here, we utilized pre-extraction derivatization and ultrahigh performance liquid chromatography electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) to detect and quantify targeted dissolved metabolites in seawater and saline culture media. Metabolites were derivatized with benzoyl chloride by their primary and secondary amine and alcohol functionalities and quantified using stable isotope-labeled internal standards (SIL-ISs) produced from 13C6-labeled benzoyl chloride. We optimized derivatization, extraction, and sample preparation for field and culture samples and evaluated matrix-derived biases. We have optimized this quantitative method for 73 common metabolites, of which 50 cannot be quantified without derivatization due to low extraction efficiencies. Of the 73 metabolites, 66 were identified in either culture media or seawater and 45 of those were quantified. This derivatization method is sensitive (detection limits = pM to nM), rapid (∼5 min per sample), and high throughput.
    Description: Funding included the Gordon and Betty Moore Foundation (Award GBMF5503 to M.A.M. and E.B.K.), Simons Foundation International (Award 409923 to E.B.K.), and the National Science Foundation (Award 1656311 to M.A.M.).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: © American Chemical Society, 2015. This article is posted here by permission of American Chemical Society; copying and redistribution for non-commercial research and education purposes only. The definitive version was published in ACS Nano 10 (2016): 6-37, doi:10.1021/acsnano.5b07826.
    Description: The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.
    Description: This research was supported by the Office of Naval Research Grant #N000141410051 (P.S.W., G.C.L.W., and T.Y.), the Genomic Science Program of the U.S. DOE-OBER,
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...