ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (13,095)
  • Biochemistry and Biotechnology  (13,095)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 590-599 
    ISSN: 0006-3592
    Keywords: protein refolding ; hollow-fibre membrane ; dialysis ; carbonic anhydrase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: We have used a cellulose acetate, hollow-fibre (HF) ultrafiltration membrane to refold bovine carbonic anhydrase, loaded into the lumen space, by removing the denaturant through controlled dialysis via the shell side space. When challenged with GdnHCl-denatured carbonic anhydrase, 70% of the loaded protein reptated through the membrane into the circulating dialysis buffer. Reptation occurred because the protein, in its fully unfolded configuration, was able to pass through the pores. The loss of carbonic anhydrase through the membrane was controlled by the dialysis conditions. Dialysis against 0.05 M Tris-HCl for 30 min reduced the denaturant around the protein to a concentration that allowed the return of secondary structure, increasing the hydrodynamic radius, thus preventing protein transmission. Under these conditions a maximum of 42% of carbonic anhydrase was recovered (from a starting concentration of 5 mg/mL) with 94% activity. This is an improvement over refolding carbonic anhydrase by simple batch dilution, which gave a maximum reactivation of 85% with 35% soluble protein yield. The batch refolding of carbonic anhydrase is very sensitive to temperature; however, during HF refolding between 0 and 25°C the temperature sensitivity was considerably reduced. In order to reduce the convection forces that give rise to aggregation and promote refolding the dialyzate was slowly heated from 4 to 25°C. This slow, temperature-controlled refolding gave an improved soluble protein recovery of 55% with a reactivation yield of 90%. The effect of a number of additives on the refolding system performance were tested: the presence of PEG improved both the protein recovery and the recovered activity from the membrane, while the detergents Tween 20 and IGEPAL CA-630 increased only the refolding yield. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 590-599, 1998.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 119-120 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 658-662 
    ISSN: 0006-3592
    Keywords: T4 lysozyme ; silica nanoparticles ; synthetic enzyme variants ; surface-induced conformational change ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Maintaining a specific molecular conformation is essential for the proper functioning of an enzyme. A substantial loss of catalytic activity can occur from the displacement caused by even a single amino acid substitution. Activity may also be lost as an enzyme undergoes a conformational change during adsorption. In this study, we investigated the effect of thermostability on the activities of three T4 lysozyme variants after adsorption to 9 nm colloidal silica particles. Less-stable T4 lysozyme variants lost more activity after adsorption than did more stable variants, apparently because they experienced more extensive structural alteration. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58: 658-662, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 139-148 
    ISSN: 0006-3592
    Keywords: metabolic engineering ; pathway analysis ; metabolic and energetic model ; physiological state ; Saccharomyces cerevisiae ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this work, an integrated modeling approach based on a metabolic signal flow diagram and cellular energetics was used to model the metabolic pathway analysis for the cultivation of yeast on glucose. This approach enables us to make a clear analysis of the flow direction of the carbon fluxes in the metabolic pathways as well as of the degree of activation of a particular pathway for the synthesis of biomaterials for cell growth. The analyses demonstrate that the main metabolic pathways of Saccharomyces cerevisiae change significantly during batch culture. Carbon flow direction is toward glycolysis to satisfy the increase of requirement for precursors and energy. The enzymatic activation of TCA cycle seems to always be at normal level, which may result in the overflow of ethanol due to its limited capacity. The advantage of this approach is that it adopts both virtues of the metabolic signal flow diagram and the simple network analysis method, focusing on the investigation of the flow directions of carbon fluxes and the degree of activation of a particular pathway or reaction loop. All of the variables used in the model equations were determined on-line; the information obtained from the calculated metabolic coefficients may result in a better understanding of cell physiology and help to evaluate the state of the cell culture process. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:139-148, 1998.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 149-153 
    ISSN: 0006-3592
    Keywords: Metabolic Control Analysis ; flux control coefficients ; top down MCA ; metabolic engineering ; Corynebacterium glutamicum ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Grouping of reactions around key metabolite branch points can facilitate the study of metabolic control of complex metabolic networks. This top-down Metabolic Control Analysis is exemplified through the introduction of group (flux, as well as concentration) control coefficients whose magnitudes provide a measure of the relative impact of each reaction group on the overall network flux, as well as on the overall network stability, following enzymatic amplification. In this article, we demonstrate the application of previously developed theory to the determination of group flux control coefficients. Experimental data for the changes in metabolic fluxes obtained in response to the introduction of six different environmental perturbations are used to determine the group flux control coefficients for three reaction groups formed around the phosphoenolpyruvate/pyruvate branch point. The consistency of the obtained group flux control coefficient estimates is systematically analyzed to ensure that all necessary conditions are satisfied. The magnitudes of the determined control coefficients suggest that the control of lysine production flux in Corynebacterium glutamicum cells at a growth base state resides within the lysine biosynthetic pathway that begins with the PEP/PYR carboxylation anaplorotic pathway. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:149-153, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 154-161 
    ISSN: 0006-3592
    Keywords: central carbon pathways ; metabolic optimization ; ethanol production ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Many attempts to engineer cellular metabolism have failed due to the complexity of cellular functions. Mathematical and computational methods are needed that can organize the available experimental information, and provide insight and guidance for successful metabolic engineering. Two such methods are reviewed here. Both methods employ a (log)linear kinetic model of metabolism that is constructed based on enzyme kinetics characteristics. The first method allows the description of the dynamic responses of metabolic systems subject to spatiotemporal variations in their parameters. The second method considers the product-oriented, constrained optimization of metabolic reaction networks using mixed-integer linear programming methods. The optimization framework is used in order to identify the combinations of the metabolic characteristics of the glycolytic enzymes from yeast and bacteria that will maximize ethanol production. The methods are also applied to the design of microbial ethanol production metabolism. The results of the calculations are in qualitative agreement with experimental data presented here. Experiments and calculations suggest that, in resting Escherichia coli cells, ethanol production and glucose uptake rates can be increased by 30% and 20%, respectively, by overexpression of a deregulated pyruvate kinase, while increase in phosphofructokinase expression levels has no effect on ethanol production and glucose uptake rates. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:154-161, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 170-174 
    ISSN: 0006-3592
    Keywords: catabolite repression ; phosphotransferase system ; inducer exclusion ; inducer expulsion ; protein kinase ; transcriptional regulation ; transport regulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Catabolite repression is a universal phenomenon, found in virtually all living organisms. These organisms range from the simplest bacteria to higher fungi, plants, and animals. A mechanism involving cyclic AMP and its receptor protein (CRP) in Escherichia coli was established years ago, and this mechanism has been assumed by many to serve as the prototype for catabolite repression in all organisms. However, recent studies have shown that this mechanism is restricted to enteric bacteria and their close relatives. Cyclic AMP-independent mechanisms of catabolite repression occur in other bacteria, yeast, plants, and even E. coli. In fact, single-celled organisms such as E. coli, Bacillus subtilis, and Saccharomyces cerevisiae exhibit multiple mechanisms of catabolite repression, and most of these are cyclic AMP-independent. The mechanistic features of the best of such characterized processes are briefly reviewed, and references are provided that will allow the reader to delve more deeply into these subjects. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:170-174, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 162-169 
    ISSN: 0006-3592
    Keywords: bioinformatics ; metabolic engineering ; genetic engineering ; mathematical analysis ; stoichiometry ; enzyme kinetics ; modal analysis ; genetic circuits ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Ten microbial genomes have been fully sequenced to date, and the sequencing of many more genomes is expected to be completed before the end of the century. The assignment of function to open reading frames (ORFs) is progressing, and for some genomes over 70% of functional assignments have been made. The majority of the assigned ORFs relate to metabolic functions. Thus, the complete genetic and biochemical functions of a number of microbial cells may be soon available. From a metabolic engineering standpoint, these developments open a new realm of possibilities. Metabolic analysis and engineering strategies can now be built on a sound genomic basis. An important question that now arises; how should these tasks be approached? Flux-balance analysis (FBA) has the potential to play an important role. It is based on the fundamental principle of mass conservation. It requires only the stoichiometric matrix, the metabolic demands, and some strain specific parameters. Importantly, no enzymatic kinetic data is required. In this article, we show how the genomically defined microbial metabolic genotypes can be analyzed by FBA. Fundamental concepts of metabolic genotype, metabolic phenotype, metabolic redundancy and robustness are defined and examples of their use given. We discuss the advantage of this approach, and how FBA is expected to find uses in the near future. FBA is likely to become an important analysis tool for genomically based approaches to metabolic engineering, strain design, and development. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:162-169, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 191-195 
    ISSN: 0006-3592
    Keywords: control analysis ; Lactococcus lactis ; gene expression ; flux ; oligonucleotide ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In this article, we review some of the expression systems that are available for Metabolic Control Analysis and Metabolic Engineering, and examine their advantages and disadvantages in different contexts. In a recent approach, artificial promoters for modulating gene expression in micro-organisms were constructed using synthetic degenerated oligonucleotides. From this work, a promoter library was obtained for Lactococcus lactis, containing numerous individual promoters and covering a wide range of promoter activities. Importantly, the range of promoter activities was covered in small steps of activity change. Promoter libraries generated by this approach allow for optimization of gene expression and for experimental control analysis in a wide range of biological systems by choosing from the promoter library promoters giving, e.g., 25%, 50%, 200%, and 400% of the normal expression level of the gene in question. If the relevant variable (e.g., the flux or yield) is then measured with each of these constructs, then one can calculate the control coefficient and determine the optimal expression level. One advantage of the method is that the construct which is found to have the optimal expression level is then, in principle, ready for use in the industrial fermentation process; another advantage is that the system can be used to optimize the expression of different enzymes within the same cell. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:191-195, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 175-190 
    ISSN: 0006-3592
    Keywords: protein-based polymers ; inverse temperature transitions ; hydrophobic-induced pKa shifts ; waters of hydrophobic hydration ; five axioms for protein engineering; microwave dielectric relaxation ; a universal mechanism for biological energy conversion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Metabolism is the conversion of available energy sources to those energy forms required for sustaining and propagating living organisms; this is simply biological energy conversion. Proteins are the machines of metabolism; they are the engines of motility and the other machines that interconvert energy forms not involving motion. Accordingly, metabolic engineering becomes the use of natural protein-based machines for the good of society. In addition, metabolic engineering can utilize the principles, whereby proteins function, to design new protein-based machines to fulfill roles for society that proteins have never been called upon throughout evolution to fulfill.This article presents arguments for a universal mechanism whereby proteins perform their diverse energy conversions; it begins with background information, and then asserts a set of five axioms for protein folding, assembly, and function and for protein engineering. The key process is the hydrophobic folding and assembly transition exhibited by properly balanced amphiphilic protein sequences. The fundamental molecular process is the competition for hydration between hydrophobic and polar, e.g., charged, residues. This competition determines Tt, the onset temperature for the hydrophobic folding and assembly transition, Nhh, the numbers of waters of hydrophobic hydration, and the pKa of ionizable functions.Reported acid-base titrations and pH dependence of microwave dielectric relaxation data simultaneously demonstrate the interdependence of Tt, Nhh and the pKa using a series of microbially prepared protein-based poly(30mers) with one glutamic acid residue per 30mer and with an increasing number of more hydrophobic phenylalanine residues replacing valine residues. Also, reduction of nicotinamides and flavins is shown to lower Tt, i.e., to increase hydrophobicity.Furthermore, the argument is presented, and related to an extended Henderson-Hasselbalch equation, wherein reduction of nicotinamides represents an increase in hydrophobicity and resulting hydrophobic-induced pKa shifts become the basis for understanding a primary energy conversion (proton transport) process of mitochondria. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:175-190, 1998.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...