ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Meteorology and Climatology  (4)
  • ice nucleating particles  (1)
  • 1
    Publication Date: 2023-01-25
    Description: Maritime boundary‐layer clouds over the Southern Ocean (SO) have a large shortwave radiative effect. Yet, climate models have difficulties in representing these clouds and, especially, their phase in this observationally sparse region. This study aims to increase the knowledge of SO cloud phase by presenting in‐situ cloud microphysical observations from the Southern Ocean Clouds, Radiation, Aerosol, Transport Experimental Study (SOCRATES). We investigate the occurrence of ice in summertime marine stratocumulus and cumulus clouds in the temperature range between 6 and −25°C. Our observations show that in ice‐containing clouds, maximum ice number concentrations of up to several hundreds per liter were found. The observed ice crystal concentrations were on average one to two orders of magnitude higher than the simultaneously measured ice nucleating particle (INP) concentrations in the temperature range below −10°C and up to five orders of magnitude higher than estimated INP concentrations in the temperature range above −10°C. These results highlight the importance of secondary ice production (SIP) in SO summertime marine boundary‐layer clouds. Evidence for rime splintering was found in the Hallett‐Mossop (HM) temperature range but the exact SIP mechanism active at lower temperatures remains unclear. Finally, instrument simulators were used to assess simulated co‐located cloud ice concentrations and the role of modeled HM rime‐splintering. We found that CAM6 is deficient in simulating number concentrations across the HM temperature range with little sensitivity to the model HM process, which is inconsistent with the aforementioned observational evidence of highly active SIP processes in SO low‐level clouds.
    Description: Plain Language Summary: Clouds in the Southern Ocean are important for climate but not well represented in climate models. Observations in this remote region have been rare. This study presents results from a recent airborne campaign that took place in the Southern Ocean where low‐ and mid‐level clouds were investigated by detecting individual cloud particles within the clouds. Although large fraction of the observed clouds did not contain ice crystals, occasionally high amounts of ice crystals were observed that cannot be explained by ice formation on aerosol particles but were result of multiplication of existing ice crystals. We tested the capability of a commonly used climate model to represent the observed ice concentrations and their sensitivity to one ice multiplication process parameterized in the model. These investigations revealed that the in the model the ice multiplication process was not responsible for generation of ice, which is in contradiction with the observations.
    Description: Key Points: Ice concentrations several orders of magnitude higher than ice nucleating particle concentrations were observed. Secondary ice production was believed to be responsible for the observed high ice number concentrations. Comparison with climate model indicated that secondary ice processes are still inadequately represented in the model.
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Description: U.S. Department of Energy http://dx.doi.org/10.13039/100000015
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NSF Polar Programs
    Keywords: ddc:551 ; southern ocean ; mixed‐phase clouds ; in‐situ observations ; ice crystals ; secondary ice ; ice nucleating particles
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Several different ice nucleation parameterizations in two different General Circulation Models (GCMs) are used to understand the effects of ice nucleation on the mean climate state, and the Aerosol Indirect Effects (AIE) of cirrus clouds on climate. Simulations have a range of ice microphysical states that are consistent with the spread of observations, but many simulations have higher present-day ice crystal number concentrations than in-situ observations. These different states result from different parameterizations of ice cloud nucleation processes, and feature different balances of homogeneous and heterogeneous nucleation. Black carbon aerosols have a small (0.06 Wm(exp-2) and not statistically significant AIE when included as ice nuclei, for nucleation efficiencies within the range of laboratory measurements. Indirect effects of anthropogenic aerosols on cirrus clouds occur as a consequence of increasing anthropogenic sulfur emissions with different mechanisms important in different models. In one model this is due to increases in homogeneous nucleation fraction, and in the other due to increases in heterogeneous nucleation with coated dust. The magnitude of the effect is the same however. The resulting ice AIE does not seem strongly dependent on the balance between homogeneous and heterogeneous ice nucleation. Regional effects can reach several Wm2. Indirect effects are slightly larger for those states with less homogeneous nucleation and lower ice number concentration in the base state. The total ice AIE is estimated at 0.27 +/- 0.10 Wm(exp-2) (1 sigma uncertainty). This represents a 20% offset of the simulated total shortwave AIE for ice and liquid clouds of 1.6 Wm(sup-2).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8104 , Journal of Geophysical Research; 112; D20 27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The motivation for this work is to better characterize the controls on the tropical upper tropospheric/lower stratospheric (UTLS) temperature and humidity.
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union Fall Meeting; Dec 17, 2010; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The motivation for this study was to better characterize the controls on the tropical upper tropospheric/lower stratospheric (UTLS) temperature and humidity.
    Keywords: Meteorology and Climatology
    Type: A-Train Symposium; Oct 27, 2010; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN46440 , Nature (ISSN 0028-0836) (e-ISSN 1476-4687); 546; 7659; 485-491
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...