ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • excipients  (1)
  • hydrothermal synthesis  (1)
  • 1
    ISSN: 1573-904X
    Schlagwort(e): pulmonary drug delivery ; dry powder ; large porous particles ; excipients ; aerosolization properties
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract Purpose. Relatively large (〉5 µm) and porous (mass density 〈 0.4 g/cm3) particles present advantages for the delivery of drugs to the lungs, e.g., excellent aerosolization properties. The aim of this study was, first, to formulate such particles with excipients that are either FDA-approved for inhalation or endogenous to the lungs; and second, to compare the aerodynamic size and performance of the particles with theoretical estimates based on bulk powder measurements. Methods. Dry powders were made of water-soluble excipients (e.g., lactose, albumin) combined with water-insoluble material (e.g., lung surfactant), using a standard single-step spray-drying process. Aerosolization properties were assessed with a Spinhaler TM device in vitro in both an Andersen cascade impactor and an AerosizerTM.. Results. By properly choosing excipient concentration and varying the spray drying parameters, a high degree of control was achieved over the physical properties of the dry powders. Mean geometric diameters ranged between 3 and 15 µm, and tap densities between 0.04 and 0.6 g/cm3. Theoretical estimates of mass mean aerodynamic diameter (MMAD) were rationalized and calculated in terms of geometric particle diameters and bulk tap densities. Experimental values of MMAD obtained from the AerosizerTM most closely approximated the theoretical estimates, as compared to those obtained from the Andersen cascade impactor. Particles possessing high porosity and large size, with theoretical estimates of MMAD between 1−3 µm, exhibited emitted doses as high as 96% and respirable fractions ranging up to 49% or 92%, depending on measurement technique. Conclusions. Dry powders engineered as large and light particles, and prepared with combinations of GRAS (generally recognized as safe) excipients, may be broadly applicable to inhalation therapy.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Journal of sol gel science and technology 19 (2000), S. 271-274 
    ISSN: 1573-4846
    Schlagwort(e): sol-gel processing ; HR coatings ; ZrO2 ; hydrothermal synthesis ; laser damage threshold
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie
    Notizen: Abstract High laser-damage resistant coatings are very important in high power laser systems. In this study ZrO2 thin films are prepared by sol-gel spin-coating technology from suitable zirconia aqueous colloidal suspensions containing nano-crystalline ZrO2 at room temperature synthesized by a hydrothermal process from an inorganic precursor (ZrOCl2·8H2O). By adding a soluble organic binder PVP to the suspension prior to application, it is possible to substantially increase the coating refractive index and the abrasion-resistance as well as the laser damage threshold. The features of the coatings and the colloidal suspensions are investigated. Multilayer highly reflective dielectric coatings are also elaborated by applying quarterwave-thick alternating coatings of the binder-aided zirconia and silica, which is prepared with the sol-gel process from TEOS. To achieve 99% reflectivity, 19–21 layers are required. Single shot laser damage tests are carried out using a high power laser at 1064 nm wavelength with a pulse duration of 2.5 ns. The laser damage thresholds of 18 and 15 J/cm2 are achieved for single ZrO2-PVP coating and ZrO2-PVP/SiO2 multilayers respectively.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...