ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:600  (731)
  • English  (731)
Collection
Language
  • 1
    Publication Date: 2024-01-18
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in MENA countries has been developed and applied to the country case of Morocco. It is designed to support the strategy development and governance of the energy transition and to serve as a guide for decision makers. Such a phase model could be shared widely as part of Morocco's engagement in international platforms of multilateral collaboration, such as the Energy Transition Council (chaired by the United Kingdom (UK) and managed by the British Embassy - Rabat). The analysis shows that Morocco has fully embarked on the energy transition. According to the MENA phase model, Morocco can be classified as being in the second phase "System Integration of Renewables". Nevertheless, Morocco plans to considerably increase the use of natural gas in order to back up intermittent solar and wind energy sources. The diversification of energy sources and a diverse portfolio of storage options, including solar thermal power and hydrogen, can foster flexibility options. To this end, a roadmap for power-to-X (PtX) should be considered for a smooth transition of the Moroccan energy supply and demand system. The expansion of local REs can significantly contribute to reducing Morocco's high fossil fuel imports that are causing a high fiscal burden. With this regard, energy security can be strengthened. Next to large-scale deployment, decentralisation of the energy system must be built to encourage an energy transition on all societal levels. The results of the analysis along the transition phase model towards 100% RE are intended to stimulate and support the discussion on Morocco's future energy system by providing an overarching guiding vision for energy transition and the development of appropriate policies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-26
    Description: Green hydrogen and synthetic fuels are increasingly recognized as a key strategic element for the progress of the global energy transition. The Middle East and North Africa (MENA) region, with its large wind and solar potential, is well positioned to generate renewable energy at low cost for the production of green hydrogen and synthetic fuels, and is therefore considered as a potential future producer and exporter. Yet, while solar and wind energy potentials are essential, other factors are expected to play an equally important role for the development of green hydrogen and synthetic fuels (export) sectors. This includes, in particular, adequate industrial capacities and infrastructures. These preconditions vary from country to country, and while they have been often mentioned in the discussion on green hydrogen exports, they have only been examined to a limited extent. This paper employs a case study approach to assess the existing infrastructural and industrial conditions in Jordan, Morocco, and Oman for the development of a green hydrogen and downstream synthetic fuel (export) sector.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-23
    Description: The establishment of the Leveraging a Climate-neutral Society–strategic Research Network (LCS–RNet) (then named the International Research Network for Low Carbon Societies) was proposed at the Group of Eight (G8) Environment Ministers’ Meeting in 2008. Its 12th annual meeting in December 2021 focused on the discussion on how to transition into a just and sustainable society and how to reduce the risks associated with the transition. This requires comprehensive studies including on the concept of transition, pathways to net-zero societies and how to realise the pathways by collaborating with various stakeholders. This Special Feature provides new insights into sustainability science by linking the scientific knowledge with practical science for the transition through the exploration of studies presented at the annual meeting. Following the opening paper, "A challenge for sustainability science: can we halt climate change?", a wide range of topics were discussed, including practices for sustainable transformation in the Erasmus University, practices in industry, energy transition and international cooperation.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-05
    Description: This paper examines the current and prospective greenhouse gas (GHG) emissions of e-fuels produced via electrolysis and Fischer-Tropsch synthesis (FTS) for the years 2021, 2030, and 2050 for use in Germany. The GHG emissions are determined by a scenario approach as a combination of a literature-based top-down and bottom-up approach. Considered process steps are the provision of feedstocks, electrolysis (via solid oxide co-electrolysis; SOEC), synthesis (via Fischer-Tropsch synthesis; FTS), e-crude refining, eventual transport to, and use in Germany. The results indicate that the current GHG emissions for e-fuel production in the exemplary export countries Saudi Arabia and Chile are above those of conventional fuels. Scenarios for the production in Germany lead to current GHG emissions of 2.78-3.47 kgCO2-eq/L e-fuel in 2021 as the reference year and 0.064-0.082 kgCO2-eq/L e-fuel in 2050. With a share of 58-96%, according to the respective scenario, the electrolysis is the main determinant of the GHG emissions in the production process. The use of additional renewable energy during the production process in combination with direct air capture (DAC) are the main leverages to reduce GHG emissions.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-05
    Description: Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-25
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-25
    Description: As society's reliance on software systems escalates over time, so too does the cost of failure of these systems. Meanwhile, the complexity of software systems, as well as of their designs, is also ever-increasing, influenced by the proliferation of new tools and technologies to address intended societal needs. The traditional response to this complexity in software engineering and software architecture has been to apply rationalistic approaches to software design through methods and tools for capturing design rationale and evaluating various design options against a set of criteria. However, research from other fields demonstrates that intuition may also hold benefits for making complex design decisions. All humans, including software designers, use intuition and rationality in varying combinations. The aim of this article is to provide a comprehensive overview of what is known and unknown from existing research regarding the use and performance consequences of using intuition and rationality in software design decision-making. To this end, a systematic literature review has been conducted, with an initial sample of 3909 unique publications and a final sample of 26 primary studies. We present an overview of existing research, based on the literature concerning intuition and rationality use in software design decision-making and propose a research agenda with 14 questions that should encourage researchers to fill identified research gaps. This research agenda emphasizes what should be investigated to be able to develop support for the application of the two cognitive processes in software design decision-making.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-13
    Description: The steel and chemical production industries are the largest industrial emitters of greenhouse gases in the European Union, together accounting for half of the EU’s industrial greenhouse gas (GHG) emissions. A promising strategy for achieving deep GHG emissions reductions is the electrification of these two industries, which would depend on the rapid expansion of renewable electricity supply. Such electrification can be direct, where electrical appliances replace fossil fuel powered ones, or indirect, using renewable hydrogen produced from water by electricity. Both methods of electrification represent a systemic shift for these industrial systems and require a major wave of investment into new process technologies, as well as access to renewable electricity and green hydrogen. Old industrial structures could become stranded as a consequence of shifting energy and feedstock supply in this way. The thesis focuses geographically on the major region for EU steel and chemical production: the area between the two North Sea ports of Antwerp and Rotterdam in the west and the Rhine-Ruhr area in the east. It studies the technical and economic feasibility of electrification in the steel and chemical production industries (specifically petrochemicals), followed by an analysis of the impact on locational factors and possible spatial reconfigurations of the production system. The analysis builds on scenario methodology with extensive stakeholder engagement and uses different quantitative bottom-up models developed during several projects. To accelerate and facilitate the transformation of the two focal industries in the region, the thesis identifies strategic options for policy makers, steel and petrochemical companies, as well as for infrastructure providers such as port authorities and network operators. The results obtained demonstrate the feasibility of electrification and its potential to play a crucial role in the defossilised production of steel and petrochemicals, even in a region with a relatively low renewable electricity potential (such as the one studied). The transformation requires a hydrogen infrastructure for steel and petrochemical clusters and increased circularity, especially in the petrochemical industry. Some production steps in the value chain, such as iron making or chemical feedstock production, will have strong incentives to relocate (either partially or fully). However, other factors, such as the benefits of existing assets and the advantages of vertical integration in existing clusters, may discourage the total relocation of entire production chains.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-09-29
    Description: Leftovers are particularly at risk of being discarded, and therefore a main component of household food waste. This study provides insights into sources of heterogeneity in leftover management behaviours, with a particular focus on the use of meal kits providing matched portion and ingredient sizes, and identifies consumer segments via a latent class analysis. We investigate whether belonging to a segment with positive attitudes toward leftovers, and engagement in conscious leftover management behaviours decreases the amounts of dinner leftovers and food waste. Besides, we demonstrate that several food waste antecedents, emotions, personal norms, intention and dinner procurement routines elicit leftover management segment membership. In addition to examining such individual differences, we also investigate the role of meal-level determinants, in particular, whether meal kits heterogeneously affect dinner leftovers depending on the consumer's leftover management segment. Data was collected from 868 households from six countries, using an online survey and diaries. Results of the latent class analysis point towards five consumer segments. We found differences in dinner leftovers amount across classes and detected heterogeneous effects of meal kits. That is, meal kits were able to diminish leftovers in two segments, but not in the other segments. These results provide novel insights into consumer heterogeneity regarding the occurrence, antecedents, and potential solutions of leftovers and resulting household food waste. Implications for both theory and policy are discussed.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-25
    Description: The production of green hydrogen in Germany is more competitive than expected compared to imports. This is the key finding of a meta-analysis conducted by the Wuppertal Institute on behalf of the North Rhine-Westphalia Association for Renewable Energies (Landesverband Erneuerbare Energien NRW). The hydrogen study focuses primarily on the year 2030 and beyond - and confirms the advantages of green hydrogen produced in Germany from domestic renewable energies, especially when the evaluation is viewed from a holistic system perspective.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...