ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Spacecraft Propulsion and Power  (1,025)
  • 2000-2004  (1,025)
  • 1
    Publication Date: 2019-08-28
    Description: During its maiden voyage in May 1962, a Centaur upper stage rocket, mated to an Atlas booster, exploded 54 seconds after launch, engulfing the rocket in a huge fireball. Investigation revealed that Centaur's light, stainless-steel tank had split open, spilling its liquid-hydrogen fuel down its sides, where the flame of the rocket exhaust immediately ignited it. Coming less than a year after President Kennedy had made landing human beings on the Moon a national priority, the loss of Centaur was regarded as a serious setback for the National Aeronautics and Space Administration (NASA). During the failure investigation, Homer Newell, Director of Space Sciences, ruefully declared: "Taming liquid hydrogen to the point where expensive operational space missions can be committed to it has turned out to be more difficult than anyone supposed at the outset." After this failure, Centaur critics, led by Wernher von Braun, mounted a campaign to cancel the program. In addition to the unknowns associated with liquid hydrogen, he objected to the unusual design of Centaur. Like the Atlas rocket, Centaur depended on pressure to keep its paper-thin, stainless-steel shell from collapsing. It was literally inflated with its propellants like a football or balloon and needed no internal structure to give it added strength and stability. The so-called "pressure-stabilized structure" of Centaur, coupled with the light weight of its high- energy cryogenic propellants, made Centaur lighter and more powerful than upper stages that used conventional fuel. But, the critics argued, it would never become the reliable rocket that the United States needed.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/SP-2004-4230 , LC-2004-042092
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-27
    Description: An integral, lightweight combustion chamber/nozzle assembly for a rocket engine has a refractory metal shell defining a chamber of generally frusto-conical contour. The shell communicates at its smaller end with a rocket body, and terminates at its larger end in a generally contact contour, which is open at its terminus and which serves as a nozzle for the rocket engine. The entire inner surface of the refractory metal shell has a thermal and oxidation barrier layer applied thereto. An ablative silica phenolic insert is bonded to the exposed surface of the thermal and oxidation barrier layer. The ablative phenolic insert provides a chosen inner contour for the combustion chamber and has a taper toward the open terminus of the nozzle. A process for fabricating the integral, lightweight combustion chamber/nozzle assembly is simple and efficient, and results in economy in respect of both resources and time.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-27
    Description: An injector for liquid fueled rocket engines wherein a generally flat core having a frustoconical dome attached to one side of the core to serve as a manifold for a first liquid, with the core having a generally circular configuration having an axis. The other side of the core has a plurality of concentric annular first slots and a plurality of annular concentric second slots alternating with the first slots, the second slots having a greater depth than said first slots. A bore extends through the core for inletting a second liquid into said core, the bore intersecting the second slots to feed the second liquid into the second slots. The core also has a plurality of first passageways leading from the manifold to the first annular slots for feeding the first liquid into said first slots. A faceplate brazed to said other side of the core is provided with apertures extending from the first and second slots through said face plate, these apertures being positioned to direct fuel and liquid oxygen into contact with each other in the combustion chamber. The first liquid may be liquid oxygen and the second liquid may be kerosene or liquid hydrogen.
    Keywords: Spacecraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
    Keywords: Spacecraft Propulsion and Power
    Type: International Electric Propulsion Conference 2003; Mar 17, 2003 - Mar 21, 2003; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: Aeroassist technology development is a vital part of the NASA In-Space Propulsion Program (ISP), which is managed by the NASA Headquarters Office of Space Science, and implemented by the Marshall Space Flight Center in Huntsville, Alabama. Aeroassist is the general term given to various techniques to maneuver a space vehicle within an atmosphere, using aerodynamic forces in lieu of propulsive fuel. Within the ISP, the current aeroassist technology development focus is aerocapture. The objective of the ISP Aerocapture Technology Project (ATP) is to develop technologies that can enable and/or benefit NASA science missions by significantly reducing cost, mass, and/or travel times. To accomplish this objective, the ATP identifies and prioritizes the most promising technologies using systems analysis, technology advancement and peer review, coupled with NASA Headquarters Office of Space Science target requirements. Plans are focused on developing mid-Technology Readiness Level (TRL) technologies to TRL 6 (ready for technology demonstration in space).
    Keywords: Spacecraft Propulsion and Power
    Type: 36th Annual Division for Planetary Science; Nov 08, 2004 - Nov 10, 2004; Louisville, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: A mixing chamber used in rocket engine testing at the NASA Stennis Space Center is modelled by a system of two nonlinear ordinary differential equations. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. Mixer operation during a test requires the regulation of its internal pressure, exit mass flow, and exit temperature. A mathematical model is developed to facilitate subsequent controller designs. The model must be simple enough to lend itself to subsequent feedback controller design, yet its accuracy must be tested against real data. For this reason, the model includes function calls to thermodynamic property data. Some structural properties of the resulting model that pertain to controller design, such as uniqueness of the equilibrium point, feedback linearizability and local stability are shown to hold under conditions having direct physical interpretation. The existence of fixed valve positions that attain a desired operating condition is also shown. Validation of the model against real data is likewise provided.
    Keywords: Spacecraft Propulsion and Power
    Type: SE-2002-12-00083-SSC
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
    Keywords: Spacecraft Propulsion and Power
    Type: 36th Annual Division for Planetary Science; Nov 08, 2004 - Nov 10, 2004; Louisville, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2003-212597 , AIAA Paper 2003-5956 , NAS 1.15:212597 , E-14139 , First International Energy Conversion Engineering Conference; Aug 17, 2003 - Aug 21, 2003; Portsmouth, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.
    Keywords: Spacecraft Propulsion and Power
    Type: 36th Annual Division for Planetary Science; Nov 08, 2004 - Nov 10, 2004; Louisville, KY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-16
    Description: Onboard radioisotope power systems being developed to support future NASA exploration missions require reliable design lifetimes of up to 14 yr and beyond. The structurally critical heater head of the high-efficiency developmental Stirling power converter has undergone extensive computational analysis of operating temperatures (up to 650 C), stresses, and creep resistance of the thin-walled Inconel 718 bill of material. Additionally assessment of the effect of uncertainties in the creep behavior of the thin-walled heater head, the variation in the manufactured thickness, variation in control temperature, and variation in pressure on the durability and reliability were performed. However, it is possible for the heater head to experience rare incidences of random temperature spikes (excursions) of short duration. These incidences could occur randomly with random magnitude and duration during the desired mission life. These rare incidences could affect the creep strain rate and therefore the life. The paper accounts for these uncertainties and includes the effect of such rare incidences, random in nature, on the reliability. The sensitivities of variables affecting the reliability are quantified and guidelines developed to improve the reliability are outlined. Furthermore, the quantified reliability is being verified with test data from the accelerated benchmark tests being conducted at the NASA Glenn Research Center.
    Keywords: Spacecraft Propulsion and Power
    Type: E-14918 , International Energy Conversion Engineering Conference; Aug 16, 2004 - Aug 19, 2004; Providence, RI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...