ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 4 (1989), S. 49-53 
    ISSN: 1476-5535
    Keywords: l-Phenylacetyl carbinol ; Saccharomyces cerevisiae ; Yeast ; Benzaldehyde ; Biotransformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The rate of production ofl-phenylacetyl carbinol bySaccharomyces cerevisiae in reaction mixtures containing benzaldehyde with sucrose or pyruvate as cosubstrate was investigated in short 1 h incubations. The effect of yeast dose rate, sucrose and benzaldehyde concentration and pH on the rate of reaction was determined. Maximum biotransformation rates were obtained with concentrations of benzaldehyde, sucrose and yeast of 6 g, 40 g and 60 g/l, respectively. Negligible biotransformation rates were observed at a concentration of 8 g/l benzaldehyde. The reaction had a pH optimum of 4.0–4.5. Rates of bioconversion of benzaldehyde and selected substituted aromatic aldehydes using both sucrose and sodium pyruvate as cosubstrate were compared. The rate of aromatic alcohol production was much higher when sucrose was used rather than pyruvate.o-Tolualdehyde and 1-chlorobenzaldehyde were poor substrates for aromatic carbinol formation although the latter produced significant aromatic alcohol in sucrose-containing media. Yields of 2.74 and 3.80 g/l phenylacetyl carbinol were produced from sucrose and pyruvate, respectively, in a 1 h reaction period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 4 (1989), S. 81-84 
    ISSN: 1476-5535
    Keywords: Ethanol fermentation ; Wheat starch ; Saccharomyces cerevisiae ; immobilization ; Continuous dynamic immobilized biocatalyst bioreactor ; Biocatalyst bioreactor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A simple and efficient method of conversion of wheat starch B to ethanol was investigated. Employing a two-stage enzymatic saccharification process, 95% of the wheat starch was converted to fermentable sugars in 40 h. From 140 g/l total sugars in the feed solution, 63.6 g/l ethanol was produced continuously with a residence time of 3.3 h in a continuous dynamic immobilized biocatalyst bioreactor by immobilized cells ofSaccharomyces cerevisiae. The advantages and the application of this bioreactor to continuous alcoholic fermentation of industrial substrates are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    European journal of nutrition 22 (1983), S. 205-212 
    ISSN: 1436-6215
    Keywords: Schwermetallwirkung ; Malatdehydrogenase ; Glutamatdehydrogenase ; Glycerinaldehyd-3-phosphatdehydrogenase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Medicine
    Description / Table of Contents: Summary The difference between cadmium, zinc, lead, and mercury in regard of their effects on the activity of the enzymes tested is very slight. Concentrations higher than 10−5 M reduce significantly the activity of the enzymes, and concentrations of approximately 10−3 M inhibit it completely. An increase of the activity cannot be detected. The addition of combinations of cadmium, zinc, and lead results in a summing up of the toxic effects, whereas the interaction between mercury and the other three heavy metals shows a cumulative effect, which is appointed nearly completely by the heavy metal more toxic. The findings suggest that under in-vitro conditions there exists a direct interaction between the heavy metals and the enzymes.
    Notes: Zusammenfassung Die vier Schwermetalle Cadmium, Zink, Blei und Quecksilber unterscheiden sich in ihrer Wirkung auf die Aktivität der untersuchten Enzyme nur sehr wenig. Konzentrationen über 10−5 M vermindern die Enzymaktivität signifikant, und Konzentrationen von etwa 10−3 M unterbinden sie völlig. Eine Steigerung der Enzymaktivität läßt sich nicht feststellen. Die Zugabe von Cadmium-, Zink- und Bleikombinationen führt zu einer Addition der toxischen Effekte, während bei der Interaktion zwischen Quecksilber und den anderen drei Schwermetallen die Gesamtwirkung fast ausschließlich durch das stärker hemmende Schwermetall allein bestimmt wird. Die erhaltenen Ergebnisse lassen vermuten, daß es unter Invitro-Bedingungen zu einer direkten Wechselwirkung zwischen den Schwermetallen und den Enzymen kommt.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; transport ; Saccharomyces cerevisiae ; fungi
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Transport proteins of microorganisms may either belong to the ATP-binding cassette (ABC) superfamily or to the major facilitator (MFS)-superfamily. MFS transporters are single-polypeptide membrane transporters that transport small molecules via uniport, symport or antiport mechanisms in response to a chemiosmotic gradient. Although Saccharomyces cerevisiae is a non-siderophore producer, various bacterial and fungal siderophores can be utilized as an iron source. From yeast genome sequencing data six genes of the unknown major facilitator (UMF) family were known of which YEL065w Sce was recently identified as a transporter for the bacterial siderophore ferrioxamine B (Sit1p). The present investigation shows that another UMF gene, YHL047c Sce, encodes a transporter for the fungal siderophore triacetylfusarinine C. The gene YHL047c Sce (designated TAF1) was disrupted using the kanMX disruption module in a fet3 background (strain DEY 1394 Δfet3), possessing a defect in the high affinity ferrous iron transport. Growth promotion assays and transport experiments with 55Fe-labelled triacetylfusarinine C showed a complete loss of iron utilization and uptake in the disrupted strain, indicating that TAF1 is the gene for the fungal triacetylfusarinine transport in Saccharomyces cerevisiae and possibly in other siderophore producing fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-8773
    Keywords: major facilitator superfamily ; iron transport ; siderophores ; enterobactin ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3Δ background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-8773
    Keywords: Manganese ; Electron spin resonance ; Superoxide dismutase ; Saccharomyces cerevisiae ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Manganese accumulation was studied by room-temperature electron spin resonance (ESR) spectroscopy inSaccharomyces cerevisiae grown in the presence of increasing amounts of MnSO4. Mn2+ retention was nearly linear in intact cells for fractions related to both low-molecular-mass and macromolecular complexes (‘free’ and ‘bound’ Mn2+, respectively). A deviation from linearity was observed in cell extracts between the control value and 0.1 mM Mn2+, indicating more efficient accumulation at low Mn2+ concentrations. The difference in slopes between the two straight lines describing Mn2+ retention at concentrations lower and higher than 0.1 mM, respectively, was quite large for the free Mn2+ fraction. Furthermore it was unaffected by subsequent dialyses of the extracts, showing stable retention in the form of low-molecular-mass complexes. In contrast, the slope of the line describing retention of ‘bound’ Mn2+ at concentrations higher than 0.1 mM became less steep after subsequent dialyses of the cell extracts. This result indicates that the macromolecule-bound Mn2+ was essentially associated with particulate structures. In contrast to Cu2+, Mn2+ had no effect on the major enzyme activities involved in oxygen metabolism except for a slight increase of cyanide-resistant Mn-superoxide dismutase activity, due to dialyzable Mn2+ complexes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-8773
    Keywords: catalase ; copper resistance ; pH-dependent growth ; Saccharomyces cerevisiae ; superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A strain of Saccharomyces cerevisiae has been adapted to increasing concentrations of copper at two different pH values. The growth curve at pH 5.5 is characterized by a time generation increasing with the amount of added copper. A significant decrease of cell volume as compared with the control is also observed. At pH 3 the cells grow faster than at pH 5.5 and resist higher copper concentrations (3.8 against 1.2 mm). Experimental evidence indicates that, after copper treatment, the metal is not bound to the cell wall, but is localized intracellularly. A significant precipitation of copper salts in the medium was observed only at pH 5.5. Increased levels of superoxide dismutase (SOD) activity were observed in copper-treated cells and which persisted after 20 subsequent inocula in a medium without added metal. On the contrary, catalase activity was not stimulated by copper treatment and, hence, not correlated with SOD levels. The mechanism of copper resistance, therefore, probably involves a persistent induction of SOD, but not of catalase, and it is strongly pH-dependent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-8773
    Keywords: EPR ; Saccharomyces cerevisiae ; uptake ; vanadate ; vanadyl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Vanadium uptake by whole cells and isolated cell walls of the yeast Saccharomyces cerevisiae was studied. When orthovanadate was added to wild-type S. cerevisiae cells growing in rich medium, growth was inhibited as a function of the VO4 3- concentration and the growth was completely arrested at a concentration of 20 mM of VO4 3- in YEPD. Electron paramagnetic resonance (EPR) spectroscopy was used to obtain structural and dynamic information about the cell-associated paramagnetic vanadyl ion. The presence of EPR signals indicated that vanadate was reduced by whole cells to the vanadyl ion. On the contrary, no EPR signals were detected after interaction of vanadate with isolated cell walls. A ‘mobile’ and an ‘immobile’ species associated in cells with small chelates and with macromolecular sites, respectively, were identified. The value of rotational correlation time τ r indicated the relative motional freedom at the macromolecular site. A strongly ‘immobilized’ vanadyl species bound to polar sites mainly through coulombic attractions was detected after interaction of VO2+ ions with isolated cell walls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 40 (1984), S. 1159-1161 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; 5-trifluoromethyl-6-àzauracil ; yeast cell cultures ; cell division ; inhibition of
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Cell division, as studied in asynchronous cultures of yeast cells, is sensitive to 5-trifluoromethyl-6-azauracil (F3CAzU). Under defined conditions (10 mmoles l−1 F3CAzU) this compound blocks immediately and completely the process of cell division. Using synchronized cells, the time-point at which division process of yeast cell can be inhibited by F3CAzU has been determined. The inhibitor effect of this compound is completely reversed by thymine, thymidine and uracil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 43 (1987), S. 886-888 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; trichothecenes ; mycotoxins ; vitamins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Several trichothecene mycotoxins were shown to inhibit the growth ofSaccharomyces cerevisiae. This effect was most pronounced with the macrocyclic trichothecenes, especially verrucarin A. Much less growth inhibition was observed with T-2 toxin. Verrucarol, diacetoxyscirpenol, acetyl T-2 toxin, HT-2 toxin, T-2 tetraol and neosolaniol were inactive at a concentration of 75 μg of toxin per disc. Incubation ofS. cerevisiae with verrucarin A together with vitamins resulted in a decrease in toxicity. Pyridoxine-HCl, Ca-pantothenate, thiamine-HCl and α-tocopheryl acetate were amongst the most potent of the vitamins tested which reversed growth inhibition, overcoming the inhibitory potential of the toxins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...