ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean circulation  (74)
  • North Atlantic Ocean  (30)
  • American Meteorological Society  (96)
  • Springer Science + Business Media
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1486–1500, doi:10.1175/2007JPO3767.1.
    Description: Fits of an annual harmonic to depth-average along-shelf current time series longer than 200 days from 27 sites over the Middle Atlantic Bight (MAB) continental shelf have amplitudes of a few centimeters per second. These seasonal variations are forced by seasonal variations in the wind stress and the cross-shelf density gradient. The component of wind stress that drives the along-shelf flow over most of the MAB mid- and outer shelf is oriented northeast–southwest, perpendicular to the major axis of the seasonal variation in the wind stress. Consequently, there is not a significant seasonal variation in the wind-driven along-shelf flow, except over the southern MAB shelf and the inner shelf of New England where the wind stress components forcing the along-shelf flow are north–south and east–west, respectively. The seasonal variation in the residual along-shelf flow, after removing the wind-driven component, has an amplitude of a few centimeters per second with maximum southwestward flow in spring onshore of the 60-m isobath and autumn offshore of the 60-m isobath. The spring maximum onshore of the 60-m isobath is consistent with the maximum river discharges in spring enhancing cross-shelf salinity gradients. The autumn maximum offshore of the 60-m isobath and a steady phase increase with water depth offshore of Cape Cod are both consistent with the seasonal variation in the cross-shelf temperature gradient associated with the development and destruction of a near-bottom pool of cold water over the mid and outer shelf (“cold pool”) due to seasonal variations in surface heat flux and wind stress.
    Description: This research was funded by the Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE- 848961.
    Keywords: Seasonal variability ; Ocean circulation ; Continental shelf ; Wind stress ; Density currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1091-1106, doi:10.1175/2007JPO3805.1.
    Description: A model of deep ocean circulation driven by turbulent mixing is produced in a long, rectangular laboratory tank. The salinity difference is substituted for the thermal difference between tropical and polar regions. Freshwater gently flows in at the top of one end, dense water enters at the same rate at the top of the other end, and an overflow in the middle removes the same amount of surface water as is pumped in. Mixing is provided by a rod extending from top to bottom of the tank and traveling back and forth at constant speed with Reynolds numbers 〉500. A stratified upper layer (“thermocline”) deepens from the mixing and spreads across the entire tank. Simultaneously, a turbulent plume (“deep ocean overflow”) from a dense-water source descends through the layer and supplies bottom water, which spreads over the entire tank floor and rises into the upper layer to arrest the upper-layer deepening. Data are taken over a wide range of parameters and compared to scaling theory, energetic considerations, and simple models of turbulently mixed fluid. There is approximate agreement with a simple theory for Reynolds number 〉1000 in experiments with a tank depth less than the thermocline depth. A simple argument shows that mixing and plume potential energy flux rates are equal in magnitude, and it is suggested that the same is approximately true for the ocean.
    Description: The research was supported by the Ocean Climate Change Institute of Woods Hole Oceanographic Institution.
    Keywords: Ocean circulation ; Mixing ; In situ observations ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 4844–4858, doi:10.1175/2011JCLI4130.1.
    Description: The factors that determine the heat transport and overturning circulation in marginal seas subject to wind forcing and heat loss to the atmosphere are explored using a combination of a high-resolution ocean circulation model and a simple conceptual model. The study is motivated by the exchange between the subpolar North Atlantic Ocean and the Nordic Seas, a region that is of central importance to the oceanic thermohaline circulation. It is shown that mesoscale eddies formed in the marginal sea play a major role in determining the mean meridional heat transport and meridional overturning circulation across the sill. The balance between the oceanic eddy heat flux and atmospheric cooling, as characterized by a nondimensional number, is shown to be the primary factor in determining the properties of the exchange. Results from a series of eddy-resolving primitive equation model calculations for the meridional heat transport, overturning circulation, density of convective waters, and density of exported waters compare well with predictions from the conceptual model over a wide range of parameter space. Scaling and model results indicate that wind effects are small and the mean exchange is primarily buoyancy forced. These results imply that one must accurately resolve or parameterize eddy fluxes in order to properly represent the mean exchange between the North Atlantic and the Nordic Seas, and thus between the Nordic Seas and the atmosphere, in climate models.
    Description: This study was supported by the National Science Foundation under Grants OCE-0726339 and OCE-0850416.
    Keywords: Eddies ; Forcing ; Meridional overturning circulation ; Transport ; North Atlantic Ocean ; Seas/gulfs/bays
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 28 (2011): 1539–1553, doi:10.1175/JTECH-D-11-00001.1.
    Description: Turbulent Reynolds stresses are now routinely estimated from acoustic Doppler current profiler (ADCP) measurements in estuaries and tidal channels using the variance method, yet biases due to surface gravity waves limit its use in the coastal ocean. Recent modifications to this method, including spatially filtering velocities to isolate the turbulence from wave velocities and fitting a cospectral model to the below-wave band cospectra, have been used to remove this bias. Individually, each modification performed well for the published test datasets, but a comparative analysis over the range of conditions in the coastal ocean has not yet been performed. This work uses ADCP velocity measurements from five previously published coastal ocean and estuarine datasets, which span a range of wave and current conditions as well as instrument configurations, to directly compare methods for estimating stresses in the presence of waves. The computed stresses from each were compared to bottom stress estimates from a quadratic drag law and, where available, estimates of wind stress. These comparisons, along with an analysis of the cospectra, indicated that spectral fitting performs well when the wave climate is wide-banded and/or multidirectional as well as when instrument noise is high. In contrast, spatial filtering performs better when waves are narrow-banded, low frequency, and when wave orbital velocities are strong relative to currents. However, as spatial filtering uses vertically separated velocity bins to remove the wave bias, spectral fitting is able to resolve stresses over a larger fraction of the water column.
    Description: J. Rosman acknowledges funding from the National Science Foundation (OCE-1061108).
    Keywords: Coastal flows ; Momentum ; Ocean circulation ; Waves, oceanic ; In situ observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 2453–2466, doi:10.1175/JCLI-D-12-00023.1.
    Description: The North Atlantic Oscillation (NAO) is one of the most important modes of variability in the global climate system and is characterized by a meridional dipole in the sea level pressure field, with centers of action near Iceland and the Azores. It has a profound influence on the weather, climate, ecosystems, and economies of Europe, Greenland, eastern North America, and North Africa. It has been proposed that around 1980, there was an eastward secular shift in the NAO’s northern center of action that impacted sea ice export through Fram Strait. Independently, it has also been suggested that the location of its southern center of action is tied to the phase of the NAO. Both of these attributes of the NAO have been linked to anthropogenic climate change. Here the authors use both the one-point correlation map technique as well as empirical orthogonal function (EOF) analysis to show that the meridional dipole that is often seen in the sea level pressure field over the North Atlantic is not purely the result of the NAO (as traditionally defined) but rather arises through an interplay among the NAO and two other leading modes of variability in the North Atlantic region: the East Atlantic (EA) and the Scandinavian (SCA) patterns. This interplay has resulted in multidecadal mobility in the two centers of action of the meridional dipole since the late nineteenth century. In particular, an eastward movement of the dipole has occurred during the 1930s to 1950s as well as more recently. This mobility is not seen in the leading EOF of the sea level pressure field in the region.
    Description: GWKM was supported by the Natural Sciences and Engineering Research Council of Canada. IAR was supported in part by NE/C003365/1. RSP was supported by Grant OCE-0959381 from the U.S. National Science Foundation.
    Description: 2013-10-15
    Keywords: North Atlantic Ocean ; North Atlantic Oscillation ; Climate variability ; Climatology ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 28 (2015): 8574–8584, doi:10.1175/JCLI-D-14-00809.1.
    Description: The subsurface ocean response to anthropogenic climate forcing remains poorly characterized. From the Coupled Model Intercomparison Project (CMIP), a robust response of the lower thermocline is identified, where the warming is considerably weaker in the subtropics than in the tropics and high latitudes. The lower thermocline change is inversely proportional to the thermocline depth in the present climatology. Ocean general circulation model (OGCM) experiments show that sea surface warming is the dominant forcing for the subtropical gyre change in contrast to natural variability for which wind dominates, and the ocean response is insensitive to the spatial pattern of surface warming. An analysis based on a ventilated thermocline model shows that the pattern of the lower thermocline change can be interpreted in terms of the dynamic response to the strengthened stratification and downward heat mixing. Consequently, the subtropical gyres become intensified at the surface but weakened in the lower thermcline, consistent with results from CMIP experiments.
    Description: The work was supported by the National Basic Research Program of China (2012CB955600), the National Natural Science Foundation of China (41125019, 41206021), and the U.S. National Science Foundation (AGS 1249145, 1305719).
    Description: 2016-05-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Physical Meteorology and Climatology ; Climate change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 2127-2140, doi:10.1175/JPO-D-18-0035.1.
    Description: Shipboard hydrographic and velocity measurements collected in summer 2014 are used to study the evolution of the freshwater coastal current in southern Greenland as it encounters Cape Farewell. The velocity structure reveals that the coastal current maintains its identity as it flows around the cape and bifurcates such that most of the flow is diverted to the outer west Greenland shelf, while a small portion remains on the inner shelf. Taking into account this inner branch, the volume transport of the coastal current is conserved, but the freshwater transport decreases on the west side of Cape Farewell. A significant amount of freshwater appears to be transported off the shelf where the outer branch flows adjacent to the shelfbreak circulation. It is argued that the offshore transposition of the coastal current is caused by the flow following the isobaths as they bend offshore because of the widening of the shelf on the west side of Cape Farewell. An analysis of the potential vorticity shows that the subsequent seaward flux of freshwater can be enhanced by instabilities of the current. This set of circumstances provides a pathway for the freshest water originating from the Arctic, as well as runoff from the Greenland ice sheet, to be fluxed into the interior Labrador Sea where it could influence convection in the basin.
    Description: Funding for this project was provided by the National Science Foundation under Grant OCE-1259618.
    Description: 2019-03-11
    Keywords: Boundary currents ; Coastal flows ; Instability ; Ocean circulation ; Potential vorticity ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 880–895, doi:10.1175/2007JPO3750.1.
    Description: The oceanic response to overflows is explored using a two-layer isopycnal model. Overflows enter the open ocean as dense gravity currents that flow along and down the continental slope. While descending the slope, overflows typically double their volume transport by entraining upper oceanic water. The upper oceanic layer must balance this loss of mass, and the resulting convergent flow produces significant vortex stretching. Overflows thus represent an intense and localized mass and vorticity forcing for the upper ocean. In this study, simulations show that the upper ocean responds to the overflow-induced forcing by establishing topographic β plumes that are aligned more or less along isobaths and that have a transport that is typically a few times larger than that of the overflows. For the topographic β plume driven by the Mediterranean overflow, the occurrence of eddies near Cape St. Vincent, Portugal, allows the topographic β plume to flow across isobaths. The modeled topographic β-plume circulation forms two transatlantic zonal jets that are analogous to the Azores Current and the Azores Countercurrent. In other cases (e.g., the Denmark Strait overflow), the same kind of circulation remains trapped along the western boundary and hence would not be readily detected.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530.
    Keywords: North Atlantic Ocean ; Mediterranean region ; Ocean models ; Mass fluxes/transport ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1203–1221, doi:10.1175/2007JPO3768.1.
    Description: Analyses of current time series longer than 200 days from 33 sites over the Middle Atlantic Bight continental shelf reveal a consistent mean circulation pattern. The mean depth-averaged flow is equatorward, alongshelf, and increases with increasing water depth from 3 cm s−1 at the 15-m isobath to 10 cm s−1 at the 100-m isobath. The mean cross-shelf circulation exhibits a consistent cross-shelf and vertical structure. The near-surface flow is typically offshore (positive, range −3 to 6 cm s−1). The interior flow is onshore and remarkably constant (−0.2 to −1.4 cm s−1). The near-bottom flow increases linearly with increasing water depth from −1 cm s−1 (onshore) in shallow water to 4 cm s−1 (offshore) at the 250-m isobath over the slope, with the direction reversal near the 50-m isobath. A steady, two-dimensional model (no along-isobath variations in the flow) reproduces the main features of the observed circulation pattern. The depth-averaged alongshelf flow is primarily driven by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an opposing mean wind stress that also drives the near-surface offshore flow. The alongshelf pressure gradient accounts for both the increase in the alongshelf flow with water depth and the geostrophic balance onshore flow in the interior. The increase in the near-bottom offshore flow with water depth is due to the change in the relative magnitude of the contributions from the geostrophic onshore flow that dominates in shallow water and the offshore flow driven by the bottom stress that dominates in deeper water.
    Description: This research was funded by Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE-848961.
    Keywords: Ocean models ; Ocean circulation ; Continental shelf ; Currents ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...