ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Aircraft Stability and Control  (90)
  • 1955-1959  (73)
  • 1940-1944  (17)
  • 1
    Publikationsdatum: 2019-08-17
    Beschreibung: Air-flow characteristics behind wings and wing-body combinations are described and are related to the downwash at specific tall locations for unseparated and separated flow conditions. The effects of various parameters and control devices on the air-flow characteristics and tail contribution are analyzed and demonstrated. An attempt has been made to summarize certain data by empirical correlation or theoretical means in a form useful for design. The experimental data herein were obtained mostly at Reynolds numbers greater than 4 x 10(exp 6) and at Mach numbers less than 0.25.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-TR-R-49
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-17
    Beschreibung: Carrier landing-approach studies of a tailless delta-wing fighter airplane disclosed that approach speeds were limited by ability to control altitude and lateral-directional characteristics. More detailed flight studies of the handling-qualities characteristics of the airplane in the carrier-approach configuration documented a number of factors that contributed to the adverse comments on the lateral-directional characteristics. These were: (1) the tendency of the airplane to roll around the highly inclined longitudinal axis, so that significant sideslip angles developed in the roll as a result only of kinematic effects; (2) reduction of the rolling response to the ailerons because of the large dihedral effect in conjunction with the kinematically developed sideslip angles; and (3) the onset of rudder lock at moderate angles of sideslip at the lowest speeds with wing tanks installed. The first two of the factors listed are inseparably identified with this type of configuration which is being considered for many of the newer designs and may, therefore, represent a problem which will be encountered frequently in the future. The results are of added significance in the demonstration of a typical situation in which extraneous factors occupy so much of the pilot's attention that his capability of coping with the problems of precise flight-path control is reduced, and he accordingly demands a greater speed margin above the stall to allow for airspeed fluctuations.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-MEMO-4-15-59A
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-17
    Beschreibung: An investigation has been made to determine the effect of wing fences, fuselage contouring, varying wing sweepback angle from 40 deg. to 45 deg., mounting the horizontal tail on an outboard boom) and wing thickness distribution upon the buffeting response of typical airplane configurations employing sweptback wings of high aspect ratio. The tests were conducted through an angle-of-attack range at Mach numbers varying from 0.60 to 0.92 at a Reynolds number of 2 million. For the combinations with 40 deg. of sweepback, the addition of multiple wing fences usually decreased the buffeting at moderate and high lift coefficients and reduced the erratic variation of buffet intensities with increasing lift coefficient and Mach number. Fuselage contouring also reduced buffeting but was not as effective as the wing fences. At most Mach numbers, buffeting occurred at higher lift coefficients for the combination with the NACA 64A thickness distributions than for the combination with the NACA four-digit thickness distributions. At high subsonic speeds, heavy buffeting was usually indicated at lift coefficients which were lower than the lift coefficients for static-longitudinal instability. The addition of wing fences improved the pitching-moment characteristics but had little effect on the onset of buffeting. For most test conditions and model configurations, the root-mean- square and the maximum values measured for relative buffeting indicated similar effects and trends; however, the maximum buffeting loads were usually two to three times the root-mean-square intensities.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-MEMO-3-23-59A
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-08-17
    Beschreibung: A wind-tunnel investigation has been made to determine the aerodynamic characteristics of a 1/4-scale model of a tilt-wing vertical-take-off-and-landing aircraft. The model had two 3-blade single-rotation propellers with hinged (flapping) blades mounted on the wing, which could be tilted from an incidence of 4 deg for forward flight to 86 deg for hovering flight. The investigation included measurements of both the longitudinal and lateral stability and control characteristics in both the normal forward flight and the transition ranges. Tests in the forward-flight condition were made for several values of thrust coefficient, and tests in the transition condition were made at several values of wing incidence with the power varied to cover a range of flight conditions from forward-acceleration (or climb) conditions to deceleration (or descent) conditions The control effectiveness of the all-movable horizontal tail, the ailerons and the differential propeller pitch control was also determined. The data are presented without analysis.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-MEMO-11-3-58L
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-08-17
    Beschreibung: Wind-tunnel measurements were made of the static and dynamic rotary stability derivatives of an airplane model having sweptback wing and tail surfaces. The Mach number range of the tests was from 0.23 to 0.94. The components of the model were tested in various combinations so that the separate contribution to the stability derivatives of the component parts and the interference effects could be determined. Estimates of the dynamic rotary derivatives based on some of the simpler existing procedures which utilize static force data were found to be in reasonable agreement with the experimental results at low angles of attack. The results of the static and dynamic measurements were used to compute the short-period oscillatory characteristics of an airplane geometrically similar to the test model. The results of these calculations are compared with military flying qualities requirements.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-MEMO-5-16-59A
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-08-17
    Beschreibung: An investigation of the use of ballast at the leading edge of a sweptback wing as a flutter fix has been made. The investigation was conducted in the Langley transonic blowdown tunnel with wing models which had an aspect ratio of 4, sweepback of the quarter-chord line of 450, and a taper ratio of 0.2. Four ballast configurations, which included different amounts of ballast distributed at two different span-wise locations, were investigated. Full-span sting-mounted models were employed. Data were obtained over a Mach number range from 0.65 to 1.32. Comparison of the data for the ballasted wings with data for a similar wing without ballast shows that in the often critical Mach number range between 0.85 and 1.05, the dynamic pressure required for flutter is increased by as much as 100 percent due to the addition of about 6 percent of the wing mass as ballast at the leading edge of the outboard sections. Furthermore, there are indications that similar benefits of leading-edge ballast can be obtained at Mach numbers above M = 1.1. Changing the spanwise location of the ballast and increasing the amount of the ballast by a factor of about 2 had very little additional effect on the dynamic pressure required for flutter. The possibility, therefore, exists that the beneficial effects obtained may be accomplished by using less than the minimum of about 6 percent of the wing mass as ballast as investigated in this paper.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-TM-X-135
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-08-17
    Beschreibung: An investigation has been conducted to determine the longitudinal stability and control characteristics of a reentry configuration at a Mach number of 2.01. The configuration consisted of clipped delta wing with hinged wing-tip panels. The results indicate that deflecting the wing-tip panels from a position normal to the wing chord plane to a position coincident with the wing chord plane resulted in a stabilizing change in the pitching-moment characteristics but did not significantly affect the nonlinearity of the pitching-moment variation with angle of attack. The trailing-edge controls were effective in producing pitching moment throughout the angle-of-attack range for control deflections up to at least 600. The control deflection required for trim, however, varied nonlinearly with angle of attack. It would appear that this nonlinearity as well as the maximum deflection required for trim could be greatly decreased by utilizing a leading-edge control in conjunction with a trailing-edge control.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-TM-X-178
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-08-16
    Beschreibung: Free-oscillation tests were made in the Langley high-speed 7- by 10-foot tunnel to determine the effects of wing thickness and wing sweep on the hinge-moment and flutter characteristics of a trailing-edge flap-type control. The untapered semispan wings had full-span aspect ratios of 5 and NACA 65A-series airfoil sections. Unswept wings having ratios of wing thickness to chord of 0.04, 0.06, 0.08, and 0.10 were investigated. The swept wings were 6 percent thick and had sweep angles of 30 deg and 45 deg. The full-span flap-type controls had a total chord of 50 percent of the wing chord and were hinged at the 0.765-wing-chord line. Tests were made at zero angle of attack over a Mach number range from 0.60 to 1.02, control oscillation amplitudes up to about 12 deg, and a range of control-reduced frequencies. Static hinge-moment data were also obtained. Results indicate that the control aerodynamic damping for the 4-percent-thick wing-control model was unstable in the Mach number range from 0.92 to 1.02 (maximum for these tests). Increasing the ratio of wing thickness to chord to 0.06, 0.08, and then to 0.10 had a stabilizing effect on the aerodynamic damping in this speed range so that the aerodynamic damping was stable for the 10-percent-thick model at all Mach numbers. The 6-percent-thick unswept-wing-control model generally had unstable aerodynamic damping in the Mach number range from 0.96 to 1.02. Increasing the wing sweep resulted in a general decrease in the stable aerodynamic damping at the lower Mach numbers and in the unstable aerodynamic damping at the higher Mach numbers. The one-degree-of-freedom control-surface flutter which occurred in the transonic Mach number range (0.92 to 1.02) for the 4-, 6-, and 8-percent-thick unswept-wing-control models could be eliminated by further increasing the ratio of thickness to chord to 0.10. Flutter could also be eliminated by increasing the wing sweep angle to either 30 deg or 45 deg. The magnitude of variation in spring moment derivative with Mach number at transonic speeds was decreased by either increasing the ratio of wing thickness to chord or increasing the wing sweep angle.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-TM-X-123
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-08-16
    Beschreibung: An investigation was conducted to obtain the aerodynamic characteristics of a model of a fighter-type airplane embodying partial body indentation. The wing had an aspect ratio of 4, taper ratio of 0.5, 35 deg sweepback of the 0.25-chord line, and a modified NACA 65A006 airfoil section at the root and a modified NACA 65A004 airfoil section at the tip. The fuselage has been indented in the region of the wing in order to obtain a favorable area distribution. The results reported herein consist of the performance and of the static longitudinal and lateral stability and control characteristics of the complete model. The Mach number range extended from 0.60 to 1.13, and the corresponding Reynolds number based on the wing mean aerodynamic chord varied from 1.77 x 10(exp 6) to 2.15 x 10(exp 6). The drag rise for both the cambered leading edge and symmetrical wing sections occurred at a Mach number of 0.95. Certain local modifications to the body which further improved the distribution of cross-sectional area gave additional reductions in drag at a Mach number of 1.00. The basic configuration indicated a mild pitch-up tendency at lift coefficients near 0.70 for the Mach number range from 0.80 to 0.90; however, the pitch-up instability may not be too objectionable on the basis of dynamic-stability considerations. The basic configuration indicated positive directional stability and positive effective dihedral through the angle-of-attack range and Mach number range with the exception of a region of negative effective dihedral at low lifts at Mach numbers of 1.00 and slightly above.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-MEMO-12-13-58L , L-476
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2019-08-16
    Beschreibung: An analytical investigation has been carried out to determine the responses of a flicker-type roll control incorporated in a missile which traverses a range of Mach number of 6.3 at an altitude of 82,000 feet to 5.26 at an altitude of 282,000 feet. The missile has 80 deg delta wings in a cruciform arrangement with aerodynamic controls attached to the fuselage near the wing trailing edge and indexed 450 to the wings. Most of the investigation was carried out on an analog computer. Results showed that roll stabilization that may be adequate for many cases can be obtained over the altitude range considered, providing that the rate factor can be changed with altitude. The response would be improved if the control deflection were made larger at the higher altitudes. lag times less than 0.04 second improve the response appreciably. Asymmetries that produce steady rolling moments can be very detrimental to the response in some cases. The wing damping made a negligible contribution to the response.
    Schlagwort(e): Aircraft Stability and Control
    Materialart: NASA-MEMO-4-23-59L , L-211
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...