ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Active faults  (3)
  • Elsevier  (3)
  • Periodicals Archive Online (PAO)
  • 2020-2024  (3)
  • 1
    Publikationsdatum: 2023-03-20
    Beschreibung: The footwall of the surface rupturing Paganica normal fault, the source of the 2009 L’Aquila earthquake (Mw 6.1) in the Central Apennines (Italy), was investigated using integrated geological and geomorphological approaches. The aim was to constrain the active tectonics by studying the Raiale River that orthogonally crosscuts the fault trace, where it provides a useful geomorphological marker of long-term fluvial incision and footwall uplift. Using morphostratigraphy and paleomagnetic analysis, the Plio–Pleistocene morphotectonic evolution of the area was reconstructed, comprising an ancient continental basin and paleolandforms that predate the footwall incision. Starting from the Late Early Pleistocene–Middle Pleistocene, fluvial dissection was mainly due to marked river downcutting triggered by significant activity of the Paganica Fault, which caused progressive base-level lowering. The Raiale River downcutting formed five Middle–Late Pleistocene fluvial terraces, that, along with absolute Optically Stimulated Luminescence (OSL) dating, allowed the identification of paleolongitudinal profiles with a diverging downstream configuration. Terrace dating yielded a minimum incision rate of 0.25 ± 0.02 mm/a, which only partially compensates the footwall uplift and can thus be considered as a minimum value for the Paganica Fault throw rate, which could reach up to ~0.45 mm/a. In parallel, using terrestrial cosmogenic nuclides, a denudation rate of 0.02–0.04 mm/a was measured on the summit of the footwall block. This denudation is in keeping with the drainage incision, suggesting a non-steady state for the fault footwall topography and a dominance of relief growth. Last, the analysis of the modern Raiale River longitudinal profile denoted an ungraded status, with two main knickzones that we interpret as transient forms due to tectonic perturbations, likely triggered by activity of the Paganica Fault during the end Early Pleistocene and the Late Pleistocene. Considering the 2009 L’Aquila earthquake coseismic rupture, we observe that the younger transience on the Raiale River longitudinal profile, if it is of tectonic origin, could have only been produced by much larger seismic events (i.e., Mw 〉 6.5) than those documented in the area by paleoseismological investigations. The collective results confirmed that in the Central Apennines, conditions of dynamic equilibrium are often not met, and that the persistence of transient perturbations induced by tectonics should be accounted for.
    Beschreibung: The work was financially supported by the MIUR (Italian Ministry of Education, University and Research) project “FIRB Abruzzo - High-resolution analyses for assessing the seismic hazard and risk of the areas affected by the 6 April 2009 earthquake”, ref. RBAP10ZC8K_005 and RBAP10ZC8K_007, and by Agreement INGV-DPC 2012-2021. The airborne LiDAR survey performedby the Civil Protection of Friuli Venezia Giulia (Italy) was kindly released by Italian Civil Protection Department Special thanks to Simone Atzori, who provided the InSAR data.
    Beschreibung: Published
    Beschreibung: 108411
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Earthquake geology ; Active faults ; L'Aquila earthquake ; Morphotectonics ; active faulting
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-12-21
    Beschreibung: Deformation across structural complexities such as along-strike fault bends may be accommodated by distributed faulting, with multiple fault splays working to transfer the deformation between two principal fault segments. In these contexts, an unsolved question is whether fault activity is equally distributed through time, with multiple fault splays recording the same earthquakes, or it is instead localized in time and space across the distributed faults, with earthquakes being clustered on specific fault splays. To answer this question, we studied the distributed deformation across a structural complexity of the Mt. Marine fault (Central Apennines, Italy), where multiple fault splays accommodate the deformation throughout the change in strike of the fault. Our multidisciplinary (remote sensing analysis, geomorphological-geological mapping, geophysical and paleoseismological surveys) study identified five principal synthetic and antithetic fault splays arranged over an across-strike distance of 500 m, all of which showing evidence of multiple surface-rupturing events during the Late Pleistocene-Holocene. The fault splays exhibit different and variable activity rates, suggesting that fault activity is localized on specific fault splays through space and time. Nonetheless, our results suggest that multiple fault splays can rupture simultaneously during large earthquakes. Our findings have strong implications on fault-based seismic hazard assessments, as they imply that data collected on one splay may not be representative of the behaviour of the entire fault. This can potentially bias seismic hazard calculations.
    Beschreibung: This work was realized under the agreement between the University of Chieti-Pescara (Dep. INGEO) and the National Institute of Geophysics and Vulcanology (INGV): “Ridefinizione delle Zone di Attenzione delle Faglie Attive e Capaci emerse dagli studi di microzonazione sismica effettuati nel territorio dei Centri abitati di Barete e Pizzoli in provincia de L'Aquila, interessati dagli eventi sismici verificatisi a far data dal 24 agosto 2016”, funded by the Commissioner structure for post-earthquake reconstruction of the Italian Government.
    Beschreibung: Published
    Beschreibung: 230075
    Beschreibung: OST2 Deformazione e Hazard sismico e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): Structural geology ; Seismic Hazard ; Active faults ; Paleoseismology ; Distributed faulting ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-05-09
    Beschreibung: The integrated interpretation of high-resolution multibeam bathymetry, seismic profiles and backscatter data in the S. Eufemia Gulf (SEG; Calabro-Tyrrhenian continental margin, south-eastern Tyrrhenian Sea) documents the relationship between postglacial fault activity and morpho-sedimentary processes. Three systems of active normal faults that affect the seafloor or the shallow subsurface, have been identified: 1) the S. Eufemia fault system located on the continental shelf with fault planes mainly oriented N26E-N40E; 2) the offshore fault system that lies on the continental slope off Capo Suvero with fault planes mainly oriented N28E-N60E; 3) the Angitola Canyon fault system located on the seafloor adjacent to the canyon having fault planes oriented N60E- N85E. The faults produce a belt of linear escarpments with vertical displacement varying from a few decimeters to about 12 m. One of the most prominent active structures is the fault F1 with the highest fault length (about 9.5 km). Two main segments of this fault are identified: a segment characterised by seafloor deformation with metric slip affecting Holocene deposits; a segment characterised by folding of the seafloor. A combined tectono- stratigraphic model of an extensional fault propagation fold is proposed here to explain such different deformation. In addition to the seabed escarpments produced by fault deformation, in the SEG, a strong control of fault activity on recent sedimentary processes is clearly observed. For example, canyons and channels frequently change their course in response to their interaction with main tectonic structures. Moreover, the upper branch of the Angitola Canyon shows straight flanks determined by fault scarps. Tectonics also determined different sediment accumulation rates and types of sedimentation (e.g., the accumulation of hanging wall turbidite deposits and the development of contourite deposits around the Maida Ridge). Furthermore, the distribution of landslides is often connected to main fault scarps and fluids are locally confined in the hanging wall side of faults and can escape at the seabed, generating pockmarks aligned along their footwall.
    Beschreibung: Published
    Beschreibung: 108775
    Beschreibung: OST2 Deformazione e Hazard sismico e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): High-resolution mapping ; Active faults ; Submarine landslides ; Tectonic geomorphology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...