ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASTROPHYSICS  (16,581)
  • 1
    Publication Date: 2019-08-28
    Description: We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 444; 2; p. 831-847
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: We present the results of a deep optical survey for distant solar system objects. An area of 1.2 sq deg of the ecliptic has been imaged to apparent red magnitude 25, resulting in the detection of seven trans-Neptunian objects. These are the first detected members of a trans-Neptunian disk that compries about 35 000 objects larger than 100 km in the 30-50 AU heliocentric distance range. We interpret the new measurements using a set of Monte Carlo models in which the effects of observational bias in the data are taken into account.
    Keywords: ASTROPHYSICS
    Type: The Astronomical Journal (ISSN 0004-6256); 109; 4; p. 1867-1876
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: We investigate observable effects of anisotropic turbulence on the velocity profiles and eclipse behavior of emission lines from accretion disks. Turbulence expands the local line broadening profile, enhancing the surface brightness of saturated emission lines. Anisotropic turbulence produces anisotropic emission in such lines. The effects become observable when the turbulence exceeds the thermal velocity. Each term in the velocity-velocity correlation matrix produces a distinctive azimuthal pattern of enhanced emission-line surface brightness on the face of the accretion disk. These patterns express themselves as changes in the observable shapes of the disk's emission lines. The best place to look for turbulence effects is in saturated emission lines of heavy elements such as Ca, Mg, and Fe, which have a smaller thermal velocity at a given sound speed and at moderate inclination (60-70 degrees), since the Keplerian shear broadening dominates at higher inclinations.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 297; 1; p. 273-284
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 1; p. 433-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-28
    Description: The sensitivity of the solar g-mode oscillation spectrum to variability in the universal gravitational constant G is described. Solar models in varying G cosmologies were constructed by evolving a zero-age main-sequence stellar model to the Sun's current age, while allowing the value of G to change according to the power law G(t) proportional to t(exp -beta), where Beta approximately equals delta G/GH and H is the Hubble constant. All solar models were constrained to the observed luminosity and radius at the current age of the Sun by adjusting the helium abundance and the mixing-length parameter of the models in the usual way for standard stellar models. Low-l g-mode oscillation periods were calculated for each of the models and compared to the claimed observation of the solar g-mode oscillation spectrum by Hill & Gu (1990). If one accepts Hill & Gu's claims, then within the uncertainties of the physics of the solar model calculation, our models rule out all but (delta G/GH) less than approximately 0.05. In other words, we conclude that G could not have varied by more than 2% over the past 4.5 Gyr, the lifetime of the present-day Sun. This result lends independent support to the validity of the standard solar model.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 445; 1; p. 148-151
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-28
    Description: A total of 663 galaxies with known redshifts in a 12 deg x 12 deg field centered on A2634, including 211 new measurements, are used to study in detail the structure of the region. In it we find six main galaxy concentrations: the nearby clusters A2634 and A2666, two groups in the vicinity of A2634, and two distant clusters at approximately 18,000 (A2622) and approximately 37,000 km/s seen in projection near the core of A2634. For A2634, the most richly sampled of those concentrations, we are able to apply strict cluster membership criteria. Two samples - one containing 200 galaxies within 2 deg from the cluster center and a second, magnitude-limited, of 118 galaxies within the central half degree - are used to examine the structure, kinematics, dynamics, and morphological segregation of the cluster. We show that early type galaxies appear to be a relaxed system, while the spiral population eschews the center of the cluster and exhibits both a multimodal velocity distribution and a much larger velocity dispersion that the ellipticals. We propose that the spiral galaxies of A2634 represent a dynamically young cluster population. For the galaxy component of A2634, we find no evidence of significant substructure in the central regions. We also conclude that the adoption of lenient membership criteria that ignore the dynamical complexity of A2634 are unlikely to be responsible for the conflicting results reported on the motion of this cluster with respect ot the CMB. The kinematical and dynamical analysis is extended to A2634's close companion, A2666, and the two distant background clusters.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 444; 1; p. 41-63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Voyager 2 observations of electrostatic electron and ion harmonic waves in Neptune's magnetosphere are addressed. A model of electron Bernstein modes generated by a loss cone distribution of superthermal electrons is scaled to Neptune parameters and a comparison of theory with the observed electron flux shows good agreement. A model of proton Bernstein modes generated by a ring distribution of Tritonogenic nitrogen ions is also investigated and satisfactory agreement with the data are obtained compatible with known properties of the magnetosphere. The success of the model in accounting for electrostatic emission observed by Voyager over a wide range of sampled parameters recommends its general applicability to planetary magnetospheres.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,465-19,469
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: Ionospheric plasma flowing out from the cusp can be an important source of plasma to the magnetosphere. One source of free energy that can drive this outflow is the injection of magnetosheath plasma into the cusp. Two-dimensional (three velocity) mesoscale particle simulations are used to investigate the particle dynamics in the cusp during southward interplanetary magnetic field. This mesoscale model self-consistently incorporates (1) global influences such as the convection of plasma across the cusp, the action of the mirror force, and the injection of the magnetosheath plasma, and (2) wave-particle interactions which produce the actual coupling between the magnetosheath and ionospheric plasmas. It is shown that, because the thermal speed of the electrons is higher than the bulk motion of the magnetosheath plasma, an upward current is formed on the equatorward edge of the injection region with return currents on either side. However, the poleward return currents are the stronger due to the convection and mirroring of many of the magnetosheath electrons. The electron distribution in this latter region evolves from upward directed streams to single-sided loss cones or possibly electron conics. The ion distribution also shows a variety of distinct features that are produced by spatial and/or temporal effects associated with varying convection patterns and wave-particle interactions. On the equatorward edge the distribution has a downflowing magnetosheath component and an upflowing cold ionospheric component due to continuous convection of ionospheric plasma into the region. In the center of the magnetosheath region, heating from the development of an ion-ion streaming instability causes the suppression of the cold ionospheric component and the formation of downward ionospheric streams. Further poleward there is velocity filtering of ions with low pitch angles, so that the magnetosheath ions develop a ring-beam distribution and the ensuing wave instabilities generate downward ionospheric conics. These downward ionospheric components are eventually turned by the mirror force, leading to the production of upward conics at elevated energies throughout the region.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,331-19,347
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: We have calculated UV/EUV (300 A less than or = lambda less than or = 1500 A) continuous energy distributions of accretion disks in the centers of active galactic nuclei (AGNs) for disk luminosities in the range 0.1 L(sub Edd) and central masses ranging from 10(exp 8) solar mass to 10(exp 10) solar mass. The vertical gas pressure structure of the disk is obtained analytically, the temperature stratification and the resulting continuum radiation fields are calculated numerically. We show that weak Lyman edges are an intrinsic feature of such disks. The strength of the H I Lyman edge decreases for increasing accretion rate and fixed mass of the central black hole. It increases for increasing central mass and fixed luminosity in terms of the Eddington luminosity.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 1; p. 45-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: The multifluid diffusive model of G. P. Zank et al. (1994), which describes the interaction of the solar wind with a cometary plasma in the outer coma, has been used to model the structure of the Halley bow shock. The theoretical results are compared to in situ observations made by Giotto. We compare the solar wind and cometary ion number densities and pressures upstream and through the quasi-perpendicular and quasi-parallel shocks (observed on the inbound and outbound legs of the encounter, respectively). In general, good agreement is found between theory and observations in terms of shock structure, strength, and location, especially for the quasi-parallel shock. The comparison between tha quasi-perpendicular shock observations and theory is complicated by the apparently nonstationary behavior of the shock, a feature which has been remarked upon by other investigators. The cometary bow shock appears to be an excellent example of an energetic-particle-mediated shock where the energetic particles comprise less than 10% of the total number density.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A5; p. 7899-7906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The Saturn magnetosphere model of Richardson and Sittler (1990) is extended to include the outer magnetosphere. The inner magnetospheric portion of this model is updated based on a recent reanalysis of the plasma data near the Voyager 2 ring plane crossing. The result is an axially symmetric model of the plasma parameters which is designed to provide accurate input for models needing either in situ or line-of-sight data and to be a useful tool for Cassini planning.
    Keywords: ASTROPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 10; p. 1177-1180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-28
    Description: We present a detailed study of the highest-frequency component of smooth radio emission observed during the Voyager 2 encounter with Neptune in August 1989. This emission occurs during three distinct periods on August 24 and 25, 1989, in the frequency range of 550 to 900 kHz. By assuming straight-line propagation from sources of both fundamental and second harmonic gyroemission, we perform a detailed analysis of the observed polarization of the emission. The data are most consistent with an L-O mode source in the north magnetic polar region, around 50 deg W, 50 deg N. A second possible source is in the north magnetic polar region, around 270 deg W, 50 deg N. This source must emit in the R-X mode.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5567-5578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-08-28
    Description: We present a complete solution for a set of magnetohydrodynamic (MHD) Riemann problems in which the upstream and downstream states have the same total pressure, and in which the normal component of the magnetic field is very small. These solutions are pertinent to subfast flows in the earth's magnetic tail and near the magnetopause. In a coplanar situation a family of solutions exists that depend on two parameters as well as on dissapation mechanisms. In the parallel case the transverse magnetic field either does not change direction or changes the direction twice by involving two intermediate shocks. In the antiparallel case an intermediate shock is always required, except when the solution consists of two switch-off shocks. In a noncoplanar case the solution is not self-similar as a function of x/t, but continues to evolve. At early times the evolution is similar to the coplanar case. In general two time-dependent intermediate shocks are required to rotate the magnetic fields. The velocity shear has a strong effect on the Riemann solution. In some cases no Riemann solution can exist because of the cavitation caused by the slow refraction waves. The calculated magnetopause structure resembles the observed structure for northward interplanetary magnetic field (IMF). However, for southward IMF, the MHD result shows the existence of a depletion layer, which is not supported by observations. We also show that on the magnetosheath side, the Walen relation, which is exact for a rotational discontinuity, can also be well satisfied by a slow shock, an intermediate shock, or the head of a slow rarefaction wave.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A4; p. 5579- 5598
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-08-28
    Description: L1551NE is a very young protostar (class I or perhaps class 0), located very close to L1551NE IRS 5. It is the second brightest far-infrared source in the Taurus molecular cloud complex, but its proximity to the brightest source IRS 5 has prevented effective observations of any molecular outflow. We here present evidence that it does indeed process an outflow, that the optical/infrared reflection nebula is associated with the blueshifted outflow lobe, and that the L1551W outflow does not originate from L1551NE, as has been suggested.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 445; 1; p. L55-L58
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-08-28
    Description: A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 57-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-08-28
    Description: We investigate the anisotropy of the thermal radiation emitted by a surface element of a neutron star atmosphere (e.g., by a polar cap of a radio pulsar). Angular dependences of the partial fluxes at various photon energies, and spectra at various angles are obtained for different values of the effective temperature T(sub eff) and magnetic field strength B, and for different directions of the magnetic field. It is shown that the local radiation of the magnetized neutron star atmospheres is highly anisotropic, with the maximum flux emitted in the magnetic field direction. At high B the angular dependences in the soft X-ray range have two maxima, a high narrow peak along B and a lower and broader maximum at intermediate angles. The radiation is strongly polarized, the modulation of the degree of polarization due to the rotation of the neurtron star may be much higher than that for the radiative flux. The results obtained are compared with recent ROSAT observations of the thermal-like radiation from the radio pulsars PSR 1929+10 and PSR J0437-4715.
    Keywords: ASTROPHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 289; 3; p. 837-845
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-08-28
    Description: Laboratory studies of infrared emission from gas-phase naphthalene in the 3.3 micrometer region following ultraviolet laser excitation are used to interpret the unidentified infrared bands observed in many astronomical objects. A time-resolved Fourier transform infrared emission technique acquires the time and spectrally resolved data. Two excitation wavelengths are employed: 193 nm and 248 nm. The infrared emission features are strongly dependent on the initial excitation energy. Wavelength-resolved spectra recorded 6.8 microseconds after the laser pulse show a 45/cm redshift from the gas-phase absorption spectra for 193 nm excitation and 25/cm for 248 nm excitation. We hypothesize that a series of sequence bands originating from the highly vibrationally excited ensemble of molecules is responsible for the observed shift. As collisional and radiative deactivation removes energy from the highly vibrationally excited molecules, the maximum in the emission profile gradually approaches the customary absorption maximum. This indicates that the amount of redshift is strongly dependent on the amount of internal vibrational energy in the molecule at the time of the vibrational transition.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 2; p. 675-681
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-08-28
    Description: We employ an approximate treatment of dissipative hydrodynamics in three dimensions to study the coalescence of binary neutron stars driven by the emission of gravitational waves. The stars are modeled as compressible ellipsoids obeying a polytropic equation of state; all internal fluid velocities are assumed to be linear functions of the coordinates. The hydrodynamics equations then reduce to a set of coupled ordinary differential equations for the evolution of the principal axes of the ellipsoids, the internal velocity parameters, and the binary orbital parameters. Gravitational radiation reaction and viscous dissipation are both incorporated. We set up exact initial binary equilibrium configurations and follow the transition from the quasi-static, secular decay of the orbit at large separation to the rapid dynamical evolution of the configurations just prior to contact. A hydrodynamical instability resulting from tidal interactions significantly accelerates the coalescence at small separation, leading to appreciable radial infall velocity and tidal lag angles near contact. This behavior is reflected in the gravitational waveforms and may be observable by gravitational wave detectors under construction. In cases where the neutron stars have spins which are not aligned with the orbital angular momentum, the spin-induced quadrupole moment can lead to precession of the orbital plane and therefore modulation of the gravitational wave amplitude even at large orbital radius. However, the amplitude of the modulation is small for typical neutron star binaries with spins much smaller than the orbital angular momentum.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 2; p. 705-716
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-08-28
    Description: Meteorites are impact-derived fragments from approximately 85 parent bodies. For seven of these bodies, the meteorites record evidence suggesting that they may have been catastrophically fragmented. We identify three types of catastrophic events: (1) impact and reassemble events greater than 4.4 Gy ago, involving molten or very hot parent bodies (greater than 1200 C); this affected the parent bodies of the ureilites, Shallowater, and the mesosiderites. In each case, the fragments cooled rapidly (approximately 1-1000 C/day) and then reassembled. (2) Later impacts involving cold bodies which, in some cases, reassembled; this occurred on the H and L ordinary chondrite parent bodies. The L parent body probably suffered another catastrophic event about 500 My ago. (3) Recent impacts of cold, multi-kilometer-sized bodies that generated meter-sized meteoroids; this occurred on the parent bodies of the IIIAB irons (650 My ago), the IVA irons (400 My ago), and the H ordinary chondrite (7 My ago).
    Keywords: ASTROPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 42; 12; p. 1109-1122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-28
    Description: We develop numerical models of accretions disks in cataclysmic variables (CVs), including and emphasizing the boundary layer region where the accretion disk meets the accreting white dwarf. We confine ourselves to solutions where the boundary layer region is vertically optically thick, and find that these solutions share several common features. The angular and radial velocities of the accreting material drop rapidly in a dynamical boundary layer, which has a radial width approximately 1%-3% of the white dwarf radius. The energy dissipated in this region diffuses through the inner part of the disk and is radiated from the disk surface in a thermal boundary layer, which has a radial width comparable to the disk thickness, approximately 5%-15% of the white dwarf radius. We examine the dependence of the boundary layer structure on the mass accretion rate, the white dwarf mass and rotation rate, and the viscosity parameter alpha. We delineate the boundary between optically thick and optically thin boundary layer solutions as a function of these parameters and suggest that by means of a careful comparison with observations it may be possible to estimate alpha in CVs. We derive an expression for the total boundary layer luminosities as a function of the parameters and show that it agrees well with the luminosites of our numerical solutions. Finally, we calcuate simple blackbody continuum spectra of the boundary layer and disk emission for our solutions and compare these to soft X-ray, EUV, and He II emission-line observations of CVs. We show that, through such comparisons, it may be possible to determine the rotation rates of the accreting stars in CVs, and perhaps also the white dwarf masses and the accretion rates. The spectra are quite insensitive to alpha, so the uncertainty in this parameter does not affect such comparisons.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 337-357
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-08-28
    Description: We model the temperature distribution at the surface of a magnetized neutron star and study the effects on the observed X-ray spectra and light curves. Generalrelativistic effects, i.e., redshift and lensing, are fully taken into account. Atmospheric effects on the emitted spectral flux are not included: we consider only blackbody emission at the local effective temperature. In this first paper we restrict ourselves to dipole fields. General features are studied and compared with the ROSAT data from the pulsars 0833 - 45 (Vela), 0656 + 14, 0630 + 178 (Geminga), and 1055 - 52, the four cases for which there is strong evidence that thermal radiation from the stellar surface is detected. The composite spectra we obtain are not very different from a blackbody spectrum at the star's effective temperature. We conclude that, as far as blackbody spectra are considered, temperature estimates using single-temperature models give results practically identical to our composite models. The change of the (composite blackbody) spectrum with the star's rotational phase is also not very large and may be unobservable inmost cases. Gravitational lensing strongly suppresses the light curve pulsations. If a dipole field is assumed, pulsed fractions comparable to the observed ones can be obtained only with stellar radii larger than those which are predicted by current models of neutron star struture, or with low stellar masses. Moreover, the shapes of the theoretical light curves with dipole fields do not correspond to the observations. The use of magnetic spectra may raise the pulsed fraction sufficiently but will certainly make the discrepancy with the light curve shapes worse: dipole fields are not sufficient to interpret the data. Many neutron star models with a meson condensate or hypersons predict very small radii, and hence very strong lensing, which will require highly nondipolar fields to be able to reproduce the observed pulsed fractions, if possible at all: this may be a new tool to constrain the size of neutron stars. The pulsed fractions obtained in all our models increase with photon energy: the strong decrease observed in Geminga at energies 0.3-0.5 keV is definitely a genuine effect of the magnetic field on the spectrum in contradistinction to the magnetic effects on the surface temperature considered her. Thus, a detailed analysis of thermal emission from the four pulsars we consider will require both complex surface field configurations and the inclusion of magnetic effects in the atmosphere (i.e., on the emitted spectrum).
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 273-285
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-28
    Description: We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 2; p. 514-526
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-08-28
    Description: This paper presents a review of the progress in the field of catastrophic disruption experiments over the past 4 years, since the publication of the review paper by Fujiwara et al. (1989). We describe the development of new techniques to produce shattering impacts relevant to the study of the collisional evolution of the asteroids, and summarize the results from numerous experiments which have been performed to date, using a variety of materials for both the impactor and the targets. Some of these, such as ice-on-ice, loose aggregates and pressurized targets, are quite new and have provided novel and exciting results. Some of the gaps existing previously in the data on fragment ejection-angle distributions, as well as translational and rotational velocity fields (including fine fragments) have been filled, and these new results will be surveyed.
    Keywords: ASTROPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 42; 12; p. 1013-1026
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: Plasma waves observed in the VLF range upstream of planetary bow shocks not only modify the particle distributions, but also provide important information about the acceleration processes that occur at the bow shock. Electron plasma oscillations observed near the tangent field line in the electron foreshock are generated by electrons reflected at the bow shock through a process that has been referred to as Fast Fermi acceleration. Fast Fermi acceleration is the same as shock-drift acceleration, which is one of the mechanisms by which ions are energized at the shock. We have generated maps of the VLF emissions upstream of the Venus bow shock, using these maps to infer properties of the shock energization processes. We find that the plasma oscillations extend along the field line up to a distance that appears to be controlled by the shock scale size, implying that shock curvature restricsts the flux and energy of reflected electrons. We also find that the ion acoustic waves are observed in the ion foreshock, but at Venus these emissions are not detected near the ULF forshock boundary. Through analogy with terrestrial ion observations, this implies that the ion acoustic waves are not generated by ion beams, but are instead generated by diffuse ion distributions found deep within the ion foreshock. However, since the shock is much smaller at Venus, and there is no magnetosphere, we might expect ion distributions within the ion foreshock to be different than at the Earth. Mapping studies of the terrestrial foreshock similar to those carried out at Venus appear to be necessary to determine if the inferences drawn from Venus data are applicable to other foreshocks.
    Keywords: ASTROPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 15; 9-Aug; p. 29-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-08-28
    Description: Hydrodynamical calculations of the evolution of a collapsing, rotating axisymmetric 10 solar masses molecular clump, including the effects of radiative acceleration but without magnetic fields, are represented. The initial cloud is assumed to be uniformly rotating, centrally condensed sphere with rho is proportional to r(exp -2). Several cases are considered, in which both the overall clump size and the total amount of angular momentum are varied. The calculations show how a warm, quasi-hydrostatic disk surrounding a central unresolved core of only a few solar masses forms and grows in size and mass. The disk is encased in two distinct accretion shock fronts, both of which are several scale heights above the equatorial plane. At the end of the calculation of our standard case, the central unresolved region is found to have a mass of 2.7 solar masses and a ratio of rotational to gravitational energy of approximately 0.45, sufficiently large to be unstable to nonaxisymmetric perturbations. In addition, the inner portions of the disk containing most of the mass are unstable according to the local Toomre criterion, implying that also in this region nonaxisymmetric perturbations will lead to rapid evolution. Under the assumption that gravitational torques would transport angular momentum out of this region, a central core of less than or approximately 8 solar masses with a stable disk of greater than or approximately = 2 solar masses should result. Frequency-dependent radiative transfer calculations of the standard case at selected ages show how the continuum spectrum of the structure depends on the disk's orientation and age and how the observed isophotal contours vary with wavelength. Because of the strong dependence on viewing angle, continuum spectra alone should not be used to estimate the evolutionary stage of development of these objects. Comparable results were obtained for the other cases considered.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 1; p. 199-208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: Models of the primitive solar nebula based on a combination of theory, observations of T Tauri stars, and global conservation laws are presented. The models describe the motions of nebular gas, mixing of interstellar material during the formation of the nebula, and evolution of thermal structure in terms of several characteristic parameters. The parameters describe key aspects of the protosolar cloud (its rotation rate and collapse rate) and the nebula (its mass relative to the Sun, decay time, and density distribution). For most applications, the models are heuristic rather than predicted. Their purpose is to provide a realistic context for the interpretation of solar system data, and to distinquish those nebular characteristics that can be specified with confidence, independently of the assumtions of particular models, form those that are poorly constrained. It is demonstrated that nebular gas typically experienced large radial excursions during the evolution of the nebula and that both inward and outward mean radial velocities on the order of meters per second occured in the terrestrial planet region, with inward velocities predominant for most ofthe evolution. However, the time history of disk size, surface density, and radial velocities are sensitive to the total angular momentun of the protosolar cloud, which cannot be constrained by purely theoretical considerations.It is shown that a certain amount of 'formational' mixing of interstellar material was an inevitable consequenc of nebular mass and angular momentum transport during protostellar collapse, regardless of the specific transport mechanisms invloved. Even if the protosolar cloud was initially homogeneous, this mixing was important because it had the effect of mingling presolar material that had experienced different degrees of thermal processing during collapse and passage through the accertion shock. Nebular thermal structure is less sensitive to poorly constrained parameters than is dynamical history. A simple criterion is derived for the condition that silicate grains are evaporated at midplane, and it is argued that this condition was probably fulfilled early in nebular history. Cooling of a hot nebula due tocoagulation of dust and consequent local reduction of optical depth is examined, and it is shown how such a process leads naturally to an enrichment of rock-forming elements in the gas phase.
    Keywords: ASTROPHYSICS
    Type: Icarus (ISSN 0019-1035); 112; 2; p. 405-429
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-08-28
    Description: We announce the discovery of an eclipsing nova-like cataclysmic variable (CV) as the optical counterpart to the HEAO 1 X-ray source 1H1752 + 081. This CV has an orbital period of 1.882801 hr, a high equivalent width of H-beta, and an average m(sub v) of 16.4 out of the eclipse. A geometric model is constructed from observations of the eclipse ingress and egress in many optical bandpasses. The broad-band emission originates primarily in two regions; the disk/accretion stream 'hot spot' and a compact central component, which may be a spot on the white dwarf surface, the entire white dwarf surface or the boundary layer between the accretion disk and the white dwarf surface. Based on the durations and offsets of the two eclipses we determined the mass ratio q = 2.5 +/- 0.6 and the angle of inclination i = 77 deg +/- 2 deg. If the central component is the entire white dwarf surface the masses of the stars are M(sub 1) = 0.80 +/- 0.06 solar masses and M(sub 2) = 0.32 +/- 0.06 solar masses. The disk is faint and small (R(sub D) = 0.25 +/- 0.05 r(sub L1), where r(sub L1) is the distance from the primary to the L(sub 1) point), compared to other eclipsing CVs. The small disk may result from the removal of angular momentum from the accretion disk by the magnetic field of the white dwarf; this CV may be a DQ Her type with a slowly rotating white dwarf. The emission-line velocities do not show the 'Z-wave' expected from the eclipse of a Keplerian accretion disk, nor do they have the correct phasing to originate near the white dwarf. The most likely origin of the line emission is the hot spot. The secondary star is visible at wavelengths greater than or equal to 6000 A during eclipse. We estimate a spectral type approximately M6 which, together with the observed m(sub 1) = 16.94 during eclipse, results in a distance estimate of 150 +/- 27 pc.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 424; 2; p. 955-966
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-08-28
    Description: We construct equilibrium sequences of rotating neutron stars in general relativity. We compare results for 14 nuclear matter equations of state. We determine a number of important physical parameters for such stars, including the maximum mass and maximum spin rate. The stability of the configurations to quasi-radial perturbations is assessed. We employ a numerical scheme particularly well suited to handle rapid rotation and large departures from spherical symmetry. We provide an extensive tabulation of models for future reference. Two classes of evolutionary sequences of fixed baryon rest mass and entropy are explored: normal sequences, which behave very much like Newtonian sequences, and supramassive sequences, which exist for neutron stars solely because of general relativistic effects. Adiabatic dissipation of energy and angular momentum causes a star to evolve in quasi-stationary fashion along an evolutionary sequence. Supramassive sequences have masses exceeding the maximum mass of a nonrotating neutron star. A supramassive star evolves toward eventual catastrophic collapse to a black hole. Prior to collapse, the star actually spins up as it loses angular momentum, an effect that may provide an observable precursor to gravitational collapse to a black hole.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 424; 2; p. 823-845
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-28
    Description: Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, T(sub e) less than or equal to 11,000 K, V(sub micro) less than or equal to 14 km/s, n(sub e) approx. = (3 +/- 2) x 10(exp 7)/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is tau(sub max) approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star, M(sub *) approx. = 26 solar masses (D/1.2 kpc), D being the distance to the star. Prospects for improving the model are discussed.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 424; 2; p. 976-982
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-08-28
    Description: We critically evaluate current methods of analysis in infrared (IR) astronomy and investigate the conditions under which these semianalytic methods are reliable. Specifically we examine the usual assumptions of homogeneities in dust density and temperature, and neglect of opacity effects when applied to internally heated, unresolved IR sources. To accomplish this, a series of radiation transport models for these sources have been constructed. The model results are treated as observed quantities and analyzed to derive the source parameters, using simple semianalytic methods. The discrepancies between the derived and actual model parameters can then be attributed to the limitations of the analysis methods and provide a measure of their reliability. Applying this approach to centrally heated, unresolved IR sources, we have studied in detail the following diagnostic problems: (1) determination of dust mass from monochromatic and integrated luminosities; (2) estimation of dust temperature distribution from color temperatures derived from the flux spectrum; and (3) determination of the empirical grain emissivity law (opacity function) for both continuum and spectral features.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 424; 2; p. 729-747
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-28
    Description: We investigate the effects of X-rays on the ionization state of stellar winds for O and early-B stars along the main sequence. In our investigation, detailed statistical equilibrium, radiative transfer, and atomic physics models are used to compute ionization distributions for H, He, C, N, O, and Si. X-rays are modeled as a spatially distributed source within the wind, with parameters constrained by ROSAT and Einstein observations. Our results indicate that the ionization balance in the winds of stars with spectral type B0 V and later is significantly altered by the X-ray radiation field. Unlike the case of denser O star winds, where the X-rays tend to perturb the level of ionization, the ionization state of the bulk wind of early-B stars can be significantly increased by soft X-rays. We examine in detail the case of tau Sco (B0 V), which has been well-studied at UV and X-ray wavelengths. Comparisons are made between calculated ionization fractions and those deduced from UV observations. In addition, we address the sensitivity of our results to the X-ray source characteristics, the wind temperature, and the photospheric extreme ultraviolet (EUV) flux. Our results suggest the possibility that for early-B stars X-rays play a critical role in both influencing the radiation line driving force, as well as ionizing and heating the wind all the way down to the top of the photosphere.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 437; 1; p. 351-360
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-28
    Description: A new general multilevel, non-Local Thermodynamic Equilibrium (LTE) radiative transfer code, valid for any velocity field, is applied to HCO(+) observations of W49A North. Three classes of collapse models are considered: free-fall collapse (v proportional to 1/sq. root of r), rho proportional to r(exp -3/2) throughout the molecular cloud, successfully reproduces the features of the observations and gives the best fit to the J = 1-0 and J = 3-2 profiles both toward the prominent H II component G of W49A North and off the center. In addition to a slow radial fall-off of density, the theoretical modeling implies the following for the molecular cloud: the large line widths result from motions occurring within the inner 1 pc, and there are probably one or more fragments with peculiar velocities within this same region.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 437; 1; p. 222-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-28
    Description: A model and simulation code have been developed for time-dependent axisymmetric disk accretion onto a compact object including for the first time the influence of an ordered magnetic field. The accretion rate and radiative luminosity of the disk are naturally coupled to the rate of outflow of energy and angular momentum in magnetically driven (+/- z) winds. The magnetic field of the wind is treated in a phenomenological way suggested by self-consistent wind solutions. The radial accretion speed u(r, t) of the disk matter is shown to be the sum of the usual viscous contribution and a magnetic contribution proportional to r(exp 3/2)(B(sub p exp 2))/sigma, where B(sub p)(r,t) is the poloidal field threading the disk and sigma(r,t) is the disk's surface mass density. An enhancement or variation in B(sub p) at a large radial distance leads to the formation of a soliton-like structure in the disk density, temperature, and B-field which propagates implosively inward. The implosion gives a burst in the power output in winds or jets and a simultaneous burst in the disk radiation. The model is pertinent to the formation of discrete fast-moving components in jets observed by very long baseline interferometry. These components appear to originate at times of optical outbursts of the active galactic nucleus.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 437; 1; p. 136-143
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-28
    Description: We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase. There is very weak evidence for a shift of the genus toward a 'bubble-like' topology. To test cosmological models, we compute the genus for mock CfA surveys drawn from large (L greater than or approximately 400/h Mpc) N-body simulations of three variants of the cold dark matter (CDM) cosmogony. The genus amplitude of the 'standard' CDM model (omega h = 0.5, b = 1.5) differs from the observations (96% confidence level) on smoothing scales is less than or approximately 10/h Mpc. An open CDM model (omega h = 0.2) and a CDM model with nonzero cosmological constant (omega h = 0.24, lambda (sub 0) = 0.6) are consistent with the observed genus amplitude over the full range of smoothing scales. All of these models fail (97% confidence level) to match the broadness of the observed genus curve on smoothing scales is less than or equal to 10/h Mpc.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 525-544
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: We propose that in the outer envelope (more than 15 sec from the star) around IRC +10216 the grains are amorphous carbon spheres of radius a with a size distribution of the form n(a) approximately equals d(exp -3.5) exp (-a/a(sub 0)) and a(sub 0) approximately equals 0.10 micrometers. Small grains (a much less than a(sub 0)) are required to explain the shielding of circumstellar molecules against destruction by interstellar ultraviolet radiation. Larger grains (a much greater than a(sub 0)) are required to explain the observed circumstellar polarization at the K band. In this model approximately 0.1% of the mass in the ejected dust is contained in particles that are larger than 1 micrometer in diameter. If the size distribution of the ejected SiC particles is similar to the size distribution that we derive for the amorphous carbon grains, then at least some of the micron-sized SiC inclusions in meteorites thought to originate from mass-losing carbon stars may have been produced in the outflows from stars such as IRC +10216.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 434; 2; p. 713-718
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-28
    Description: 3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 434; 2; p. 493-502
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-08-28
    Description: We compute acoustic shock wave-heated chromosphere models for moderately cool giant stars which differ greatly in metallicity. Subsequently, we simulate the emerging Mg II k lines assuming partial redistribution. The initial acoustic energy fluxes and the wave periods are taken from acoustic wave generation calculations based on traditional convection zone models. We find that the Mg II and Ca II core emissions are close to the observed basal flux limits which are common for giants and dwarfs. In addition, we find that the Mg II core emission is independent of the metallicity, in agreement with observations. We argue that these results should be considered as further evidence that the basal flux limits are indeed due to acoustic shock heating. The acoustic heating mechanism seems to be dominant in all nonmagnetic nonpulsating late-type stars.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 432; 2; p. 690-700
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-08-28
    Description: We compute encounters of a realistic white dwarf model with a massive black hole in the regime where relativistic effects are important, using a three-dimensional, finite-difference, Eulerian, piecewise parabolic method (PPM) hydrodynamical code. Both disruptive and nondisruptive encounters are considered. We identify and discuss relativistic effects important for the problem: relativistic shift of the pericenter distance, time delay, relativistic precession, and the tensorial structure of the tidal forces. In the nondisruptive case, stripping of matter takes place. In the surface layers of the surviving core, complicated hydrodynamical phenomena are revealed. In both disruptive and nondispruptive encounters, material flows out in the form of two thin, S-shaped, supersonic jets. Our results provide realistic initial conditions for the subsequent investigation of the dynamics of the debris in the field of the black hole. We evaluate the critical conditions for complete disruption of the white dwarf, and compare our results with the corresponding results for nonrelativistic encounters.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 432; 2; p. 680-689
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-08-28
    Description: Colliding comets in the Solar System may be an important source of gamma ray bursts. The spherical gamma ray comet cloud required by the results of the Venera Satellites (Mazets and Golenetskii, 1987) and the Burst and Transient Source Experiment (BATSE) detector on the Compton Satellite (Meegan et al., 1992a, b) is neither the Oort Cloud nor the Kuiper Belt. To satisfy observations of N(greater than P(sub max)) vs P(sub max) for the maximum gamma ray fluxes, P(sub max) greater than 10(exp -5) ergs/sq cm/ s (about 30 bursts/yr), the comet density, n, should increase as n approximately a(exp 1) from about 40 to 100 AU where a is the comet heliocentric distance. The turnover above 100 AU requires n approximately a(exp -1/2) to 200 AU to fit the Venera results and n approximately a(exp 1/4) to 400 AU to fit the BATSE data. Then the masses of comets in the 3 regions are from: 40-100 AU, about 9 earth masses, m(sub E); 100-200 AU about 25 m(sub E); and 100-400 AU, about 900 m(sub E). The flux of 10(exp -5) ergs/sq cm/s corresponds to a luminosity at 100 AU of 3 x 10(exp 26) ergs/s. Two colliding spherical comets at a distance of 100 AU, each with nucleus of radius R of 5 km, density of 0.5 g/cu cm and Keplerian velocity 3 km/s have a combined kinetic energy of 3 x 10(exp 28) erg, a factor of about 100 greater tha required by the burst maximum fluxes that last for one second.
    Keywords: ASTROPHYSICS
    Type: Astrophysics and Space Science (ISSN 0004-640X); 208; 2; p. 301-311
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-28
    Description: We consider the hard (greater than 2 keV) X-ray emission from accretion columns in an intermediate polar system, GK Per, using a simple settling solution. The rate of photon emission per logarithmic energy interval can be fitted with a power law, E(exp -gamma), with gamma approximately 2.0, in agreement with observations. This index is only weakly dependent on the mass accretion rate, dot-M, for dot-M in the range of a few times 10(exp 16-18) g/s. The peak energy of the photon spectra (after photoelectric absorption) is expected to be E(sub p) approximately (5 keV) gamma(exp -1/3) (N(sub H)/10(exp 23)/sq cm)(exp 1/3) where N(sub H) is the hydrogen column density along the line of sight. The observed spectra of GK Per and possibly of V1223 Sgr suggest N(sub H) approximately 10(exp 23)/sq cm. This large N(sub H) may be due to partially ionized preshock column material. Alternatively, we also consider absorption by the cool outer parts of an accretion disk. In this case the photoelectric absorption depth in the disk is a sensitive function of inclination. For GK Per the required inclination is approximately 83 deg. For mass accretion rates larger than a critical rate of approximately 10(exp 18) g/s, X-ray emission from the column accretion is significantly affected by radiation drag. Although the mass accretion rate increases dramatically during outbursts, the observed hard (greater than 2 keV) X-ray luminosity will not rise proportionately. The slope and peak energy of the outburst spectra are only weakly affected. We conclude that the observed X-ray spectra can be explained by this simple analytic solution and that the production of hard X-rays from the accretion shock at the magnetic poles in the intermediate polars is in general agreement with the observations. However, since the X-ray emission and absorption depend on the mass accretion rate in a complicated manner, observed hard X-ray luminosities (greater than 2 keV) are not a good indicator of the mass accretion rate in the X-ray emitting regions.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 2; p. 829-839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-08-28
    Description: We present spherically symmetric, non-local thermodynamic equilibrium (non-LTE), expanding model atmosphere synthetic spectra of SN 1993J and compare them to the ultraviolet and optical spectra obtained simultaneously on 1993 April 15 by the Hubble Space Telescope (HST) and at Lick Observatory. We are able to fit the optical and HST near-UV spectra with a variety of compositions, but find that our best fits are obtained with an enhanced helium abundance (Y = 0.8) and significant nonthermal ionization due to gamma rays produced by the decay of Ni-56. We find the effects of X-rays produced by thermal bremsstrahlung in the circumstellar material to have little effect on the spectrum. Our current models are unable to fit the HST far-UV region, predicting too little flux and strong, unseen Fe II features.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 1; p. 334-339
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-28
    Description: In many cosmological models, the large angular scale anisotropy in the cosmic microwave background is parameterized by a spectral index, n, and a quadrupolar amplitude, Q. For a Harrison-Peebles-Zel'dovich spectrum, n = 1. Using data from the Far Infrared Survey (FIRS) and a new statistical measure, a contour plot of the likelihood for cosmological models for which -1 less than n less than 3 and 0 equal to or less than Q equal to or less than 50 micro K is obtained. Depending upon the details of the analysis, the maximum likelihood occurs at n between 0.8 and 1.4 and Q between 18 and 21 micro K. Regardless of Q, the likelihood is always less than half its maximum for n less than -0.4 and for n greater than 2.2, as it is for Q less than 8 micro K and Q greater than 44 micro K.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 432; 1; p. L15-L18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-28
    Description: We revisit the formation of radiative instabilities in cool star atmospheres and compare our results with those given by Muchmore, Nuth, & Stencel. We have considered the combined influence of CO and SiO molecules and have computed models for a grid of effective temperatures and geometrical dilution factors for the stellar radiation. Our results are based on the analysis of the energy balance of gas elements with prescribed thermodynamic properties. Our results show that radiative instabilities are most likely primarily caused by CO, whereas SiO is expected to play only a minor role, except when the CO density is reduced compared to Local Thermodynamic Equilibrium (LTE) values or the CO band can be assumed to be optically thick. The onset of radiative instabilities is expected to be strongly modified when dynamic phenomena such as stochastic shocks are present. Our results provide strong evidence that dust formation can most likely occur via a radiative instability alone. Therefore, we present a revised version of the Muchmore et al. dust formation paradigm, which also considers hydrodynamic cooling. The new paradigm is particularly relevant in cases where dust is formed relatively close to the stellar photosphere.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 1; p. 303-312
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-28
    Description: We show that an energetic electron distribution which has a temperature anisotropy (T perpendicular to b is greater than T parallel to b), or which is gyrating about a DC magnetic field, can generate electron cyclotron waves with frequencies below the electron cyclotron frequency. Relativistic effects are included in solving the dispersion equation and are shown to be quantitatively important. The basic idea of the mechanism is the coupling of the beam mode to slow waves. The unstable electron cyclotron waves are predominantly electromagnetic and right-hand polarized. For a low-density plasma in which the electron plasma frequency is less than the electron cyclotron frequency, the excited waves can have frequencies above or below the electron plasma frequency, depending upon the parameters of the energetic electron distribution. This instability may account for observed Z mode waves in the polar magnetosphere of the Earth and other planets.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 234-239
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-28
    Description: Recent studies of low-frequency electromagnetic waves upstream of the Saturn bow shock have shown that these waves, in contrast to those at Earth, are observed not in one, but in at least two, distinct frequency bands. The results of wave mode identification based on the Hall-magnetohydrodynamic (MHD) model of plasma and observed wave polarization suggested that these waves propagate in the high beta intermediate mode. However, the underlying instability was not unambiguously determined. In the present paper we use the full electromagnetic dispersion relation derived from linear Vlasov theory in order to examine which of the plasma modes, with observed properties, are unstable in an isotropic Maxwellian plasma in the presence of backstreaming proton beams consistent with Voyager 2 observations at Saturn. As a result we find that the unstable 'Alfvenic' beam mode, as well as resonant and non-resonant fast magnetosonic modes have properties consistent with the data. Moreover, we find that in contrast to the Earth's upstream waves, at Saturn no 'kinetic' normal mode can account for the observed magnetic polarization.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A1; p. 19-25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-28
    Description: We have obtained the first average 2-500 keV spectra of Seyfert galaxies, using the data from Ginga and Compton Gamma-Ray Observatory's (CGRO) Oriented Scintillation Spectrometer Experiment (OSSE). Our sample contains three classes of objects with markedly different spectra: radio-quiet Seyfert 1's and 2's, and radio-loud Seyfert 1's. The average radio-quiet Seyfert 1 spectrum is well-fitted by a power law continuum with the energy spectral index alpha approximately equals 0.9, a Compton reflection component corresponding to a approximately 2 pi covering solid angle, and ionized absorption. There is a high-energy cutoff in the incident power law continuum: the e-folding energy is E(sub c) approximately equals 0.6(sup +0.8 sub -0.3) MeV. The simplest model that describes this spectrum is Comptonization in a relativistic optically-thin thermal corona above the surface of an accretion disk. Radio-quiet Seyfert 2's show strong netural absorption, and there is an indication that their X-ray power laws are intrinsically harder. Finally, the radio-loud Seyfert spectrum has alpha approximately equals 0.7, moderate neutral absorption E(sub C) = 0.4(sup +0.7 sub -0.2) MeV, and no or little Compton reflection. This is incompatible with the radio-quiet Seyfert 1 spectrum, and probably indicating that the X-rays are beamed away from the accretion disk in these objects. The average spectra of Seyferts integrated over redshift with a power-law evolution can explain the hard X-ray spectrum of the cosmic background.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 438; 2; p. L63-L66
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-28
    Description: The dwarf novae SU UMa and RU Peg were each observed with the ROSAT Observatory during outburst. SU UMa was also observed twice between outbursts. The spectrum of SU UMa during quiescence is well fitted by a 2.1 keV thermal bremsstrahlung model with a Gaussian line at 0.97 keV absorbed by a column density of 1.4 x 10(exp 20)/sq cm. During the outburst the X-ray count rate dropped by a factor of 3. The outburst spectrum is well fitted to a similar spectrum with a significantly larger absorption. In outburst the mass transfer rate, dot-M, approaches the critical value for the optically thin/thick transition predicted by theoretical models of the boundary layer while the X-ray emission remains optically thin. The best-fit model to the outburst spectrum of RU Peg is a 4.9 keV thermal bremsstrahlung plus a line at 0.89 keV absorbed by a column density of 2.8 x 10(exp 20)/sq cm. The column density is consistent with the upper limit determined for interstellar absorption. The boundary layer at outburst is expected to be optically thick based on the value of dot-M determined from the IUE spectra. There are no ROSAT observations of RU Peg between outbursts, but the flux detected by ROSAT is a factor of 10 lower than that seen with the Einstein Observatory, probably during quiescence. For both CVs the X-ray flux from the boundary layer significantly decreases at the same time that the optical-UV flux greatly increases. We suggest that during outburst most of the boundary layer energy is carried away as kinetic energy of the wind.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 425; 2; p. 829-834
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-28
    Description: We reexamine the question of the frequency of occurrence of oxygen-neon-magnesium (ONeMg) degenerate dwarfs in classical nova systems, in light of recent observations which have been interpreted as suggesting that 'neon novae' can be associated with relatively low mass white dwarfs. Determinations of heavy-element concentrations in nova ejecta are reviewed, and possible interpretations of their origin are examined. We conclude that, of the 18 classical novae for which detailed abundance analyses are availble, only two (or possibly three) seem unambiguously to demand the presence of an underlying ONeMg white dwarf: V693 CrA 1981, V1370 Aql 1982, and possibly QU Vul 1984. Three other novae which exhibit significant neon enrichments, relative to their total heavy-element concentrations, are RR Pic 1925, V977, Sco 1989, and LMC 1990 No. 1. This result is entirely consistent with present frequency estimates, and our interpretation of the lower levels of enrichment in other systems explains, in a natural way, the existence of relatively low mass white dwarfs in some of the 'neon' novae.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 425; 2; p. 797-801
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-28
    Description: We analyze the consequences of models of structure formation for higher order (n-point) galaxy correlation functions in the mildly nonlinear regime. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations have recently been introduced to obtain more power on large scales, R(sub p) is approximately 20/h Mpc, e.g., low matter-density (nonzero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower et al. We show that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale dependence leads to a dramatic decrease of the the hierarchical amplitudes Q(sub J) at large scales, r is greater than or approximately R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 425; 2; p. 392-402
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-28
    Description: A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial surface brightness distribution. The present data may suggest that the X-ray surface brightness is more extended than the optical profile. In this case, a straightforward explanation in terms of stellar sources could not be satisfactory. The available data can be better explained with three different contributions: a very soft component of stellar origin, a hard component from X-ray binaries, and an approximately 0.6 keV hot ISM. The latter can explain the extended X-ray surface brightness profile, if the galaxy has a dark-to-luminous mass ratio of 9, with the dark matter very broadly distributed, and a SN Ia explosive rate of approximately 0.6 the Tammann rate.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 429; 1; p. 105-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-28
    Description: Recent observations indicate that the eclipsing pulsar binary PSR B1957+20 undergoes alternating epochs of orbital period increase and decrease. We apply a model developed to explain orbital period changes of alternating sign in other binaries to the PSR B1957+20 system and find that it fits the pulsars observations well. The novel feature of the PSR B1957+20 system is that the energy flow in the companion needed to power the orbital period change mechanism can be supplied by tidal dissipation, making the companion the first identified tidally powered star. The flow of energy in the companion drives magnetic activity, which underlies the observed orbital period variations. The magnetic activity and the wind driven by the pulsar irradiation results in a torque on the spin of the companion. This torque holds the companion out of synchronous rotation, causing tidal dissipation of energy. We propose that the progenitor had a approximately 2 hr orbital period and a companion mass of 0.1-0.2 solar mass, and the system is evolving to longer orbital periods by mass and angular momentum loss on a timescale of 10(exp 8) yr.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-367X); 436; 1; p. 312-318
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-08-28
    Description: This contribution reports the results of an infrared imaging survey aimed at characterizing the stellar populations associated with the three densest star-forming cores in the Ophiuchus molecular cloud complex. The survey has sufficient sensitivity at J, H, and K (at 5 sigma limits of 16.5, 15.4, and 14.2) to provide a complete census of embedded young stellar objects (YSOs) with masses greater than the hydrogen-burning limit, provided that their ages are less than 3 Myr and that they are obscured by no more than approximately 18 mag of visual extinction. Our data suggest (1) a large fraction (greater than 70%) of the sources located within the cores are still surrounded by circumstellar disks and/or envelopes; and (2) the shape of the initial mass function for masses, M less than 1 solar mass, appears to be consistent with that derived from the solar neighborhood. We also report the results of a deeper imaging survey of centimeter continuum sources (14 sources) in these star-forming cores and in the larger Ophiuchus complex (eight sources). A large fraction (11/14) of the radio sources associated with the cores appear to have infrared excesses diagnostic of circumstellar accretion disks and/or infalling circumstellar envelopes. In these cases, the centimeter continuum radiation most likely diagnoses the ionized component of energetic winds or jets which characterizes YSOs during the disk accretion phase. By contrast, of the eight radio sources located outside dense cores, only two show infrared excesses.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 438; 2; p. 813-829
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-08-28
    Description: For the bright z = 3.02 radio-quiet quasar, HS 1946+7658, we have obtained radio to X-ray data within the past year: 5 GHz and 1415 MHz data from the Very Large Array (VLA); IR photometry at J, H, K, L prime (3.4 micrometers and N; IR spectroscopy; UBVRI photometry; optical spectrophotometry and high-resolution spectra; and an X-ray spectrum from the ROSAT Position Sensitive Proportional Counter (PSPC). The spectral energy distribution (SED) constructed from these data is compared to the mean SED for a set of low-redshift quasars, and while they appear generally similar, there are several differences. In relation to the low-redshift mean, the SED of HS 1946+7658 shows (1) only an upper limit at 10 micrometers (a rest wavelength of 2.5 micrometers, indicating that HS 1946+7658 does not have a strong near-IR excess such as hot dust would produce; (2) relatively weak Fe II and Balmer continuum emission at approximately 3000 A; and (3) a steeper turndown shortward of Ly alpha, even after correction for the Ly alpha forest absorption lines.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 438; 2; p. 643-649
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-08-28
    Description: A spectral survey of Orion-KL has been carried out in the 2 mm atmospheric window in the frequency range 149.6-159.6 GHz, using the FCRAO 14 m telescope. Typical sensitivities achieved were T(sub A sup *) approximately 0.03-0.1 K, peak-to-peak. Over 180 spectral lines were detected, including approximately 45 unidentified features. The spectra were measured with a single-sideband receiver and, even at levels of T(sub A sup *) approximately 30 mK, are far from being confusion-limited. Fifteen known species were conclusively identified in Orion in this spectral region, with the largest numbers of lines arising from methyl formate, ethyl cyanide, methanol, and dimethyl ether. These species have beam-averaged column densities of N(sub tot) approximately 0.5-8 x 10(exp 15)/sq cm. Several other species have been tentatively observed, including acetaldehyde, C2S, and possibly EtOH. The large organic species, however, appear to arise from different regions. For example, CH3CCH and (CH3)2O come primarily from the extended ridge, while EtCN and VyCN exclusively arise in the hot core. This survey clearly demonstrates that the 2 mm window is rich in spectral lines. It also suggests there is much chemical selectivity in the formation of large organic interstellar molecules.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal Supplement Series (ISSN 0067-0049); 89; 1; p. 155-187
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-08-28
    Description: We propose a model of a optical 'wisps' of the Crab Nebula, features observed in the nebular synchrotron surface brightness near the central pulsar, as manifestations of the internal structure of the shock terminating the pulsar wind. We assume that this wind is composed of ions and a much denser plasma of electrons and positrons, frozen together to a toroidal magnetic field and flowing relativistically. We construct a form of solitary wave model of the shock structure in which we self-consistently solve for the ion orbits and the dynamics of the relativistically hot, magnetized e(+/-) background flow. We ignore dispersion in the ion energies, and we treat the pairs as an adiabatic fluid. The synchrotron emission enhancements, observed as the wisps, are then explained as the regions where reflection of the ions in the self-consistent magnetic field causes compressions of the e(+/-).
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 1; p. 230-260
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-28
    Description: Solar occultation observations of the Martian atmosphere near the limb of the planet were performed during the Phobos mission by means of the Auguste infrared spectrometer in the ranges 2707-2740 and 5392-5272/cm with a resolving power of approximately = 1300. The spectra exhibit features at 2710 and 2730/cm which have not been identified previously. After applying a set of corrections to the data and examining the spectra of various molecules, we are led to conclude that the best candidate for the above-mentioned features is formaldehyde (CH2O). It was observed in eight of the nine successful occultation sequences, mainly between 8 and 20 km with an average mixing ratio of 0.5 (+0.8, - 0.3) ppm (there are no good data below 8 km). The observations are performed in equatorial spring conditions. The altitude distribution of formaldehyde reveals correlation with the permanent haze opacity.
    Keywords: ASTROPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 41; 6; p. 441-451
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-28
    Description: A new interstellar molecule, N2O, known as nitrous oxide or 'laughing gas,' has been detected using the NRAO 12 m telescope. The J = 3 - 2, 4 - 3, 5 - 4, and 6 - 5 rotational transitions of this species at 75, 100, 125, and 150 GHz, respectively, were observed toward Sgr B2(M). The column density derived for N2O in this source is N(sub tot) approx. 10(exp 15)/sq. cm, which corresponds to a fractional abundance of approx. 10(exp -9), relative to H2. This value implies abundance ratios of N2O/NO approx. 0.1 and N2O/HNO approx. 3 in the Galactic center. Such ratios are in excellent agreement with predictions of ion-molecule models of interstellar chemistry using early-time calculations and primarily neutral-neutral reactions. N2O is the third interstellar molecule detected thus far containing an N-O bond. Such bonds cannot be so rare as previously thought.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 2; p. L181-L184
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-28
    Description: We present a calculation of the profiles of emission lines originating in a relativistic, eccentric disk, and show examples of the resulting model profiles. Our calculations are motivated by the fact that in about one-quarter of the double-peaked emission lines observed in radio-loud active galactic nuclei (and in the mildly active nucleus of NGC 1097), the red peak is stronger than the blue peak, which is contrary to the prediction of relativistic, circular disk models. Using the eccentric disk model we fit some of the observed profiles that cannot be fitted with a circular disk model. We propose two possible scenarios for the formation of an eccentric disk in an active galactic nucleus: (a) tidal perturbation of the disk around a supermassive black hole by a smaller binary companion, and (b) formation of an elliptical disk from the debris resulting from the tidal disruption of a star by the central black hole. In the former case we show that the eccentricity can be long-lived because of the presence of the binary companion. In the latter case, although the inner parts of the disk may circularize quickly, we estimate that the outer parts will maintain their eccentricity for times much longer than the local viscous time. We suggest that it may be possible to detect profile variability on much shorter timescales than those ranging from a decade to several centuries by comparing the evolution of the line profile with detailed model predictions. We argue that line-profile variability may also be the most promising discriminant among competing models for the origin of asymmetric, double-peaked emission lines.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 438; 2; p. 610-622
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-28
    Description: I describe an algorithm which uses the high spatial resolution of the Hubble Space Telescope to complement the high spatial-to-noise, approximately symmetric point response function, relatively large spatial coverage, and standard filters available from ground based images of crowded fields. Applying this technique to the central regions of the globular cluster 47 Tucanae, I find that the morphology of the giant branch in the core is significantly different from that in more distant regions (r approximately equals 5 to 10 core radii) of the cluster. In particular, there appear to be fewer bright giants in the core, along with an enhanced `asymptotic giant branch' (AGB) sequence. Depletion of giants has been observed in the cores of other dense clusters, and may be due to `stripping' of large stars by stellar encounters and/or mass transfer in binary systems. Central concentrations of true asymptotic giant branch stars are not expected to result from dynamical processes; possibly some of these stars may be evolved blue stragglers.
    Keywords: ASTROPHYSICS
    Type: Astronomical Journal (ISSN 0004-6256); 107; 3; p. 1073-1078
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-28
    Description: The small crossing time of compact groups of galaxies (t(sub cr)H(sub 0) approximately less than 0.02) makes it hard to understand why they are observable at all. Our dissipationless N-body simulations show that within a single rich collapsing group compact groups of galaxies continually form. The mean lifetime of a particular compact configuration if approximately 1 Gyr. On this time scale, members may merge and/or other galaxies in the loose group may join the compact configuration. In other words, compact configurations are continually replaced by new systems. The frequency of this process explains the observability of compact groups. Our model produces compact configurations (compact groups (CG's) with optical properties remarkably similar to Hickson's (1982) compact groups (HCG's): (1) CG's have a frequency distribution of members similar to that of HCG's; (2) CG's are approximately equals 10 times as dense as loose groups; (3) CG's have dynamical properties remarkably similar to those of HCG's; (4) most of the galaxy members of CG's are not merger remnants. The crucial aspect of the model is the relationship between CG's and the surrounding rich loose group. Our model predicts the frequency of occurrence of CG's. A preliminary analysis of 18 rich loose groups is consistent with the model prediction. We suggest further observational tests of the model.
    Keywords: ASTROPHYSICS
    Type: Astronomical Journal (ISSN 0004-6256); 107; 3; p. 868-879
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-28
    Description: We have investigated the dynamics of the seven Abell clusters A193, A399, A401, A1795, A1809, A2063, and A2124, based on redshift data reported previously by us (Hill & Oegerle, (1993)). These papers present the initial results of a survey of cD cluster kinematics, with an emphasis on studying the nature of peculiar velocity cD galaxies and their parent clusters. In the current sample, we find no evidence for significant peculiar cD velocities, with respect to the global velocity distribution. However, the cD in A2063 has a significant (3 sigma) peculiar velocity with respect to galaxies in the inner 1.5 Mpc/h, which is likely due to the merger of a subcluster with A2063. We also find significant evidence for subclustering in A1795, and a marginally peculiar cD velocity with respect to galaxies within approximately 200 kpc/h of the cD. The available x-ray, optical, and galaxy redshift data strongly suggest that a subcluster has merged with A1795. We propose that the subclusters which merged with A1795 and A2063 were relatively small, with shallow potential wells, so that the cooling flows in these clusters were not disrupted. Two-body gravitational models of the A399/401 and A2063/MKW3S systems indicate that A399/401 is a bound pair with a total virial mass of approximately 4 x 10(exp 15) solar mass/h, while A2063 and MKW3S are very unlikely to be bound.
    Keywords: ASTROPHYSICS
    Type: Astronomical Journal (ISSN 0004-6256); 107; 3; p. 857-867
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-28
    Description: We describe a method for computing the history of the luminosity function in a young cluster still forming within a molecular cloud complex. Our method, which utilizes detailed results from stellar evolution theory, assumes that clusters arise from the continuous collapse of dense cloud cores over a protracted period of time. It is also assumed that stars reaching the main sequence are distributed in mass according to a prescribed initial mass function (IMF). We keep track separately of the contributions to the luminosity function from the populations of protostars, pre-main-sequence stars, and main-sequence stars. We derive expressions for the fractional contribution of these populations to both the total number of stars produced and the total cluster luminosity. In our model, the number of protostars rises quickly at first, but then levels off to a nearly constant value, which it maintains until the dispersal of the cloud complex. The number fraction of protostars always decreases with time. Averaged over the life of the parent cloud, this fraction is typically a few percent. The protostar mass distribution can be expressed as an integral over the IMF.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 1; p. 313-328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-28
    Description: To understand better the early Galactic production of Li, Be, and B by comsmic-ray spallation and fusion reactions, the dependence of these production rates on cosmic-ray models and model parameters is examined. The sensitivity of elemental and isotopic production to the cosmic-ray path length magnitude and energy dependence, source spectrum, spallation kinematics, and cross section uncertainties is studied. Changes in these model features, particularly those features related to confinement, are shown to alter the Be- and B- versus-Fe slopes from a naive quadratic relation. The implications of our results for the diffuse gamma-ray background are examined, and the role of chemical evolution and its relation to our results is noted. It is also noted that the unmeasured high-energy behavior of alpha + alpha fusion can lead to effects as large as a factor of 2 in the resultant yields. Future data should enable Population II Li, Be, and B abundances to constrain cosmic-ray models for the early Galaxy.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 435; 1; p. 185-202
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The evolution of the B- and K-band luminosity functions of galaxies is inferred in a relatively model-independent way from deep spectroscopic and photometric surveys. We confirm earlier evidence by Eales for an increase in the amplitude of the B-band galaxy luminosity function at modest redshift (z less than or approx. 0.2). We find in addition that the slope of the faint end of the luminosity function must systematically steepen and progress toward more luminous galaxies with increasing lookback time, assuming that the galaxy redshift distribution may be smoothly extrapolated 2 mag fainter than observed, as suggested by recent gravitational lensing studies. This evolution is shown to be color-dependent, and we predict the near-infrared color distribution of faint galaxies. The luminosity function of blue (B - K less than or approx. 4) galaxies in the range 0.2 less than or approx. z less than or approx. 1 can be represented by a Schechter function with characteristic light density phi(sup *) L(sup *) comparable to that of present-day late-type galaxies, but with a steeper faint end slope alpha approx. 1.4.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 436; 2; p. L143-L147
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-28
    Description: We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal Supplement Series (ISSN 0067-0049); 90; 2; p. 833-835
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: Voyager 2 crossed the inbound or upstream Neptunian bow shock at 1430 spacecraft event time on August 24 in 1989 (Belcher et al., 1989). The plasma and magnetic field measurements allow us to study the solar wind interaction with the outermost gas giant. To fully utilize all of the spacecraft observations, an improved nonlinear least squares, 'Rankine-Hugoniot' magnetohydrodynamic shock-fitting technique has been developed (Szabo, 1994). This technique is applied to the Neptunian data set. We find that the upstream bow shock normal points nearly exactly toward the Sun consistent with any reasonable large-scale model of the bow shock for a near subsolar crossing. The shock was moving outward with a speed of 14 +/- 12 km/s. The shock can be characterized as a low beta, high Mach number, strong quasi-perpendicular shock. Finally, the shock microstructure features are resolved and found to scale well with theoretical expectations.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A2; p. 1723-1730
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-28
    Description: An analytical model is developed for the diffusive equilibrium plasma density distribution in the Io plasma torus. The model has been employed successfully to follow the ray path of plasma waves in the multi-ion Jovian magnetosphere; it would also be valuable for other studies of the Io torus that require a smooth and continuous description of the plasma density and its gradients. Validity of the analytical treatment requires that the temperature of thermal electrons be much lower than the ion temperature and that superthermal electrons be much less abundant than the thermal electrons; these two conditions are satisfied in the warm outer region of the Io torus from L = 6 to L = 10. The analytical solutions agree well with exact numerical calculations for the most dense portion of the Io torus within 30 deg of the equator.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A2; p. 1823-1828
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-28
    Description: The evolution of the common envelope phase of a binary system consisting of a 4.67 solar mass red giant and a 0.94 solar mass dwarf is studied using smoothed particle hydrodynamics. We demonstrate that the three-dimensional effects associated with the gravitational tidal torques lead to a rapid decay of the orbit on timescales approximately less than 1 yr. The relative orbit of the two cores in the common envelope is initally eccentric and tends to circularize as the orbital separation of the two cores decreases. The angular momentum lost from the orbital motion is distributed throughout the common envelope, and the double core does not evolve to a state of co-rotation for the evolutionary time followed. The energy dissipated from the relative orbit and deposited in the common envelope results in the ejection of approximately 13% of the mass of the envelope. The mass is ejected in all directions, but there is a preference for mass ejection in the orbital plane of the binary system. For example, approximately 80% of the ejected mass lies within 30 deg of the binary orbital plane. Because gravitational forces are long range, most of the energy and angular momentum is imparted to a small fraction of the common envelope resulting in an efficiency of the mass ejection process of approximately 15%. The core of the red giant executes significant displacement with respect to the center of mass of the system and contributes nearly equally to the total energy dissipation rate during the latter phases of the evolution. The degree of departure from synchronism of the initial binary system can be an important property of the system which can affect the outcome of the common envelope phase.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 422; 2; p. 729-736
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: We use a time-dependent hydrodynamics code to follow the propagation of acoustic waves into the corona of an M dwarf star. An important qualitative difference between M dwarfs and stars such as the Sun is that the acoustic spectrum in M dwarfs is expected to peak at periods close to the acoustic cutoff P(sub A): this allows more effective penetration of waves into the corona. In our code, radiative losses in the photosphere, chromosphere, and corona are computed using Rosseland mean opacities, Mg II kappa and Ly alpha emission, and optically thin emissivities respectively. We find that acoustic heating can maintain a corona with a temperature of order 0.7-1 x 10(exp 6) K and a surface X-ray flux as large as 10(exp 5)ergs/sq cm/s. In a recent survey of X-rays from M dwarfs, some (20%-30%) of the stars lie at or below this limiting X-ray flux: we suggest that such stars may be candidates for acoustically maintained coronae.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 1; p. 392-400
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-08-28
    Description: We determine the speeds, and many other physical properties, of flame fronts that propagate inward into degenerate and semidegenerate cores of carbon and oxygen (CO) and neon and oxygen (NeOMg) white dwarfs when such flames are bounded on their exterior by a convective region. Combustion in such fronts, per se, is incomplete, with only a small part of the initial mass function burned. A condition of balanced power is set up in the star where the rate of energy emitted as neutrinos from the convective region equals the power available from the unburned fuel that crosses the burning front. The propagation of the burning front itself is in turn limited by the temperature at the base of the convective shell, while cannot greatly exceed the adiabatic value. Solving for consistency between these two conditions gives a unique speed for the flame. Typical values for CO white dwarfs are a few hundredths of a centimeter per second. Flames in NeOMg mixtures are slower. Tables are presented in a form that can easily be implemented in stellar evolution codes and yield the rate at which the convective shell advances into the interior. Combining these velocities with the local equations for stellar structure, we find a minimum density for each gravitational potential below with the local equations for stellar structure, we find a minimum density for each gravitational potential below which the flame cannot propagate, and must die. Although detailed stellar models will have to be constructed to reslove some issues conclusively, our results that a CO white dwarf inginted at its edge will not burn carbon all the way to its center unless the mass of the white dwarf exceeds 0.8 solar mass. On the other hand, it is difficult to ignite carbon burning by compression alone anywhere in a white dwarf whose mass does not exceed 1.0 solar mass. Thus, compressionally ignited shell carbon burning in an accerting CO dwarf almost certainly propagates all the way to the center of the star. Implications for neutron star formation, and Type Ia supernova models, are briefly discussed. These are also applicable to massive stars in the about 10-12 solar mass range which ignite neon burning off center.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 1; p. 348-363
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-08-28
    Description: Aside from primordial gravitational instability of the cosmological fluid, various mechanisms have been proposed to generate large-scale structure at relatively late times, including, e.g., 'late-time' cosmological phase transitions. In these scenarios, it is envisioned that the universe is nearly homogeneous at the times of last scattering and that perturbations grow rapidly sometimes after the primordial plasma recombines. On this basis, it was suggested that large inhomogeneities could be generated while leaving relatively little imprint on the cosmic microwave background (MBR) anisotropy. In this paper, we calculate the minimal anisotropies possible in any 'late-time' scenario for structure formation, given the level of inhomogeneity observed at present. Since the growth of the inhomogeneity involves time-varying gravitational fields, these scenarios inevitably generate significant MBR anisotropy via the Sachs-Wolfe effect. Moreover, we show that the large-angle MBR anisotropy produced by the rapid post-recombination growth of inhomogeneity is generally greater than that produced by the same inhomogeneity growth via gravitational instability. In 'realistic' scenarios one can decrease the anisotropy compared to models with primordial adiabatic fluctuations, but only on very small angular scales. The value of any particular measure of the anisotropy can be made small in late-time models, but only by making the time-dependence of the gravitational field sufficiently 'pathological'.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 1; p. 9-25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-08-28
    Description: Using numerical simulation, we explore the triggering of starburst activity in disk galaxies which accrete low-mass dwarf companions. In response to the tidal perturbation of an infalling satellite, a disk galaxy develops a strong two-armed spiral pattern, which in turn drives large quantities of disk gas into its central regions. The global star formation rate stays constant during the early stages of an accretion, before rising rapidly by an order of magnitude when the central gas density becomes very large. The associated central starburst is quite compact. Models which include a bulge component in the disk galaxy show that the presence of a bulge can suppress the radial gas flow and limit the strength of the associated starburst, depending on the overall mass profile. The fact that such relatively common 'minor' mergers may trigger strong starburst activity suggests that many disk galaxies may have experienced starbursts at some point in their lifetime. Implications for galaxy evolution and formation are discussed.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 425; 1; p. L13-L16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-08-28
    Description: We define a model of the compositon and abundances of grains and gases in molecular cloud cores and accretion disks around young stars by employing a wide range of astronomical data and theory, the composition of primitive bodies in the solar system, and solar elemental abundances. In the coldest portions of these objects, we propose that the major grain species include olivine (Fe, Mg, 2SiO4), orthopyroxene (Fe, Mg, SiO3), volatile and refractory organics, water ice, troilite (FeS), and metallic iron. This compositional model differs from almost all previous models of the interstellar medium (ISM) by having organics as the major condensed C species, rather than graphite; by including troilite as a major grain species; and by specifying the mineralogical composition of the condensed silicates. Using a combination of laboratory measurements of optical constants and asymptotic theory, we derive values of the real and imaginary indices of refraction of these grain species over a wavelength range that runs from the vacuum ultraviolet (UV) to the radio domain. The above information on grain properties is used to estimate the Rosseland mean opacity of the grains and their monochromatic opacity.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 421; 2; p. 615-639
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: A perturber may excite a coherent mode in a star cluster or galaxy. If the stellar system is stable, it is commonly assumed that such a mode will be strongly damped and therefore of little practical consequence other than redistributing momentum and energy deposited by the perturber. This paper demonstrates that this assumption is false; weakly damped modes exist and may persist long enough to have observable consequences. To do this, a method for investigating the dispersion relation for spherical stellar systems and for locating weakly damped modes in particular is developed and applied to King models of varying concentration. This leads to a following remarkable result: King models exhibit very weakly damped m = 1 modes over a wide range of concentration (0.67 less than or equal to c less than or equal to 1.5 have been examined). The predicted damping time is tens of hundreds of crossing times. This mode causes the peak density to shift from and slowly revolve about the initial center. The existence of the mode is supported by n-body simulation. Higher order modes and possible astronomical consequences are discussed. Weakly damped modes, for example, may provide a neutral explanation for observed discrepancies between density and kinematic centers in galaxies, off-center nuclei, the location of velocity cusps due to massive black holes, and both m = 1 and barlike disturbances of disks enbedded in massive halos or spheroids. Gravitational shocking may excite the m = 1 mode in globular clusters, which could modify their subsequent evolution and displace the positions of exotic remnants.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 421; 2; p. 481-490
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-08-28
    Description: We find that dim gamma-ray bursts (GRBs) are softer than bright GRBs, as indicated on average by data from the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO). We show that this correlation is statistically significant with respect to variations due to random differences between GRBs. This effect is discernible using a variety of methods and data sets, including public domain data. We analyze several types of systematic errors and selection effects in the BATSE data and conclude that the observed effect is not dominated by any of them. We therefore assert that this dim/soft effect is a real property of GRBs. It is possible that this correlation is a consequence of the time dilation and that the burst sources are located at cosmological distances.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 435; 2; p. L133-L136
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-08-28
    Description: We analyze the ultraviolet (UV) emission line and continuum properties of five low-redshift active galactic nuclei (four luminous quasars: PKS 0405-123, H1821 + 643, PG 0953 + 414, and 3C 273, and one bright Seyfert 1 galaxy: Mrk 205). The HST spectra have higher signal-to-noise ratios (typically approximately 60 per resolution element) and spectral resolution (R = 1300) than all previously published UV spectra used to study the emission characteristics of active galactic nuclei. We include in the analysis ground-based optical spectra covering H beta and the narrow (O III) lambda lambda 4959, 5007 doublet. New results are obtained and presented.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 1; p. 110-135
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-08-28
    Description: We investigate the gravitational interaction of a generally eccentric binary star system with circumbinary and circumstellar gaseous disks. The disks are assumed to be coplanar with the binary, geometrically thin, and primarily governed by gas pressure and (turbulent) viscosity but not self-gravity. Both ordinary and eccentric Lindblad resonances are primarily responsible for truncating the disks in binaries with arbitrary eccentricity and nonextreme mass ratio. Starting from a smooth disk configuration, after the gravitational field of the binary truncates the disk on the dynamical timescale, a quasi-equilibrium is achieved, in which the resonant and viscous torques balance each other and any changes in the structure of the disk (e.g., due to global viscous evolution) occur slowly, preserving the average size of the gap. We analytically compute the approximate sizes of disks (or disk gaps) as a function of binary mass ratio and eccentricity in this quasi-equilibrium. Comparing the gap sizes with results of direct simulations using the smoothed particle hydrodynamics (SPH), we obtain a good agreement. As a by-product of the computations, we verify that standard SPH codes can adequately represent the dynamics of disks with moderate viscosity, Reynolds number R approximately 10(exp 3). For typical viscous disk parameters, and with a denoting the binary semimajor axis, the inner edge location of a circumbinary disk varies from 1.8a to 2.6a with binary eccentricity increasing from 0 to 0.25. For eccentricities 0 less than e less than 0.75, the minimum separation between a component star and the circumbinary disk inner edge is greater than a. Our calculations are relevant, among others, to protobinary stars and the recently discovered T Tau pre-main-sequence binaries. We briefly examine the case of a pre-main-sequence spectroscopic binary GW Ori and conclude that circumbinary disk truncation to the size required by one proposed spectroscopic model cannot be due to Linblad resonances, even if the disk is nonviscous.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 421; 2; p. 651-667
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-28
    Description: We argue that the strong emission lines of T Tauri stars are generally produced in infalling envelopes. Simple models of infall constrained to a dipolar magnetic field geometry explain many peculiarities of observed line profiles that are difficult, if not impossible, to reproduce with wind models. Radiative transfer effects explain why certain lines can appear quite symmetric while other lines simultaneously exhibit inverse P Cygni profiles, without recourse to complicated velocity fields. The success of the infall models in accounting for qualitative features of observed line profiles supports the proposal that stellar magnetospheres disrupt disk accretion in T Tauri stars, that true boundary layers are not usually present in T Tauri stars, and that the observed 'blue veiling' emission arises from the base of the magnetospheric accretion column.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 2; p. 669-687
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: A model for the photometric evolution of galaxies has been developed and has been applied to the problem of galaxy counts. The integrated colors of galaxies are calculated using the most recently computed evolutionary tracks from Maeder and collaborators complemented with evolutionary tracks derived by other authors. The asymptotic giant branch lifetime is left as a free parameter. A series of cosmological models using different values of the cosmological constant, lambda(sub 0), and the density parameter, omega(sub 0), have been computed. The universality hypothesis of the luminosity function of galaxies has been abandoned. The influence of galaxy merging on the counts has been considered in a simple manner by assuming that the number of strongly interacting galaxies in a comoving volume increases with redshift as a power law given by (1 + z)(exp 3.8). Taking a Schechter parametrization for the luminosity function of the different types of galaxies, we are able to reproduce the observations reasonably well. We have also considered models with a Gaussian distribution for the luminosity function of the brighter galaxies that provide a poorer fit to the observations. It is shown that galaxy count data are not yet able to make unambiguous cosmological statements since evolutionary assumptions are critical. In particular, an omega(sub 0) = 1, lambda(sub 0) = 0 cosmology is shown to be consistent with the data.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 426; 2; p. 459-472
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-28
    Description: Accurate determination of the spin-down rates of millisecond pulsars requires consideration of the apparent acceleration of the pulsars due to their high transverse velocities. We show that for several nearby pulsars the neglect of this effect leads to substantial errors in inferred pulsar ages and magnetic fields. Two important ramifications follow. (1) The intrinsic magnetic field strengths of all millisecond pulsars lie below 5 x 10(exp 8) G, strengthening an earlier suggestion of a 'gap' between the magnetic field strengths of millisecond pulsars and of high-mass binary pulsars such as PSR B1913+16, which are thought to have been formed by mass transfer in low-mass and high-mass X-ray binaries, respectively. This result suggests that the magnetic field strengths of recycled pulsars are related to their formation and evolution in binary systems. (2) The corrected characteristic ages of several millisecond pulsars appear to be greater than the age of the Galactic disk. We reconcile this apparent paradox by suggesting that some millisecond pulsars were born with periods close to their current periods. This conclusion has important implications for the interpretation of the cooling ages of white dwarf companions, the birthrate discrepancy between millisecond pulsars and their X-ray binary progenitors, and the possible existence of a class of weakly magnetized (B much less than 10(exp 8)G), rapidly rotating neutron stars.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 (ISSN 0004-637X); 421; p. L15-L18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-28
    Description: The principal uncertainty in studying the magnetic properties of protoplanetary disks concerns the ionization levels of the disk's gas. The low gas temperature precludes thermal ionization, leaving cosmic rays as the dominant source of ionization. It has been shown that the resulting electrical conductivity is just high enough for a MHD dynamo to produce contemporaneously a magnetic field in most of the extended parts of a turbulent protoplanetary disk. Here we argue that the effectiveness of cosmic rays to ionize the bulk of the gas is impaired by the influence of the generated magnetic field on the propagation of cosmic rays within a disk. Cosmic rays scatter on magnetic inhomogeneities, and, as a result, their penetration depth decreases to only a fraction of the disk half-thickness, resulting in a severe depletion of free charge from the midplane regions of a disk. That, in turn, undercuts the dynamo mechanism, so extended parts of the disk are free from a dynamically significant magnetic field. We also point out that any additional, even small, in situ source of ionization, such as radioactive Al-26, may again make a dynamo a viable regeneration process capable of producing a dynamically important magnetic field.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 427; 1; p. 377-383
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-28
    Description: We investigate the hydrodynamics of three-dimensional classical Bondi-Hoyle accretion. Totally absorbing spheres of varying sizes (from 10 down to 0.01 accretion radii) move at Mach 3 relative to a homogeneous and slightly perturbed medium, which is taken to be an ideal gas (gamma = 5/3). To accommodate the long-range gravitational forces, the extent of the computational volume is 32(exp 3) accretion radii. We examine the influence of numerical procedure on physical behavior. The hydrodynamics is modeled by the 'piecewise parabolic method.' No energy sources (nuclear burning) or sinks (radiation, conduction) are included. The resolution in the vicinity of the accretor is increased by multiply nesting several (5-10) grids around the sphere, each finer grid being a factor of 2 smaller in zone dimension that the next coarser grid. The largest dynamic range (ratio of size of the largest grid to size of the finest zone) is 16,384. This allows us to include a coarse model for the surface of the accretor (vacuum sphere) on the finest grid, while at the same time evolving the gas on the coarser grids. Initially (at time t = 0-10), a shock front is set up, a Mach cone develops, and the accretion column is observable. Eventually the flow becomes unstable, destroying axisymmetry. This happens approximately when the mass accretion rate reaches the values (+/- 10%) predicted by the Bondi-Hoyle accretion formula (factor of 2 included). However, our three-dimensional models do not show the highly dynamic flip-flop flow so prominent in two-dimensional calculations performed by other authors. The flow, and thus the accretion rate of all quantities, shows quasi-periodic (P approximately equals 5) cycles between quiescent and active states. The interpolation formula proposed in an accompanying paper is found to follow the collected numerical data to within approximately 30%. The specific angular momentum accreted is of the same order of magnitude as the values previously found for two-dimensional flows.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 427; 1; p. 351-376
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-08-28
    Description: We use numerical models to investigate the nature of induced population gradients in merger remnants. As noted by White, we find that the population mixing in stellar-dynamical mergers is rather moderate, leading to metallicity gradients in the remnant that are closely tied to gradients in the progenitor galaxies. Furthermore, the resultant metallicity gradients are poorly fitted by power laws, showing significant nonlinearities within an effective radius. If constant metallicity bulges are added to the progenitor disks, the strong relation between final and initial metallicity gradients is diluted, but the final gradients are still not well fitted by power laws. Detailed studies of the shape of the metallicity gradients in elliptical galaxies should help determine the degree to which stellar-dynamical mergers have contributed to the population of present-day ellipticals. We also consider the effects of centrally concentrated starbursts on metallicity gradients. Using simple models for metallicity enhancement, we find that addition of a metal-rich starburst population can reproduce the magnitude and shape of metallicity gradients observed in elliptical galaxies. However, even in such cases the metallicity gradients in the merger remnant should steepen significantly beyond an effective radius. Modelling such merger-induced starbursts with population synthesis techniques, we find that if the starburst is characterized by solar metallicity, it should be detectable as a bluing of the nuclear regions for several Gyr. However, if the starburst is metal-rich, the reddening effects of higher metallicity makes the broad-band signature of the starburst much more difficult to detect.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 427; 1; p. 112-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-28
    Description: Two phases of dynamical instability are theoretically predicted to exist during the evolution of supergiants of normal metallicity that are initially more massive than approximately 60 solar mass. One phase occurs briefly in the yellow or red region of the Hertzsprung-Russell diagram for stars in the early stages of core helium burning, and the other phase occurs for a longer time in the blue or blue-white region for stars exhausting their core helium. Probably only the second phase exists in the case of supergiants with initial masses between approximately 60 solar mass and approximately 30 solar mass or with low metallicities The cause of instability is the partial ionization of hydrogen and helium in a quasi-isolated outer region of the stellar envelope, above the layer where the iron opacity attains a large local maximum. Predicted luminosities, effective temperatures, ejected nebular masses, remnant masses, eruption recurrence times, and lifetimes, though very approximate, are generally consistent with available observational data for the important class of unstable supergiants known as luminous blue variables.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 426; 1; p. L43-L46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-28
    Description: We have obtained far-ultraviolet (1150-1610 A) spectra of U Gem with the Faint Object Spectrograph on the Hubble Space Telescope approximately 13 and 70 days after the end of a normal dwarf nova outburst of the system. Both spectra appear dominated by the White Dwarf (WD) in U Gem. At 1400 A, the flux from U Gem declined approximately 28% between the two observations. Detailed comparison of the spectra with solar abundance WD models suggest that average surface temperature of the WD surface cooled from approximately 39,400 K to approximately 32,100 K between the two observations. The main features which are not fitted well by WD models are absorption due to N V lambda lambda-1239, 1243 and emission at Lyman-alpha. These observations provide unambiguous confirmation that the WD in U Gem cools during quiescence, as was suggested by analyses of far-ultraviolet spectra obtained with International Ultraviolet Explorer (IUE) and Hopkins Ultraviolet Telescope (HUT).
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 424; 1; p. L49-L52
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-08-28
    Description: A Roentgen Satellite (ROSAT) X-ray spectrum of the z = 1.049 'red quasar' 3C 212 has a strong low-energy cutoff. The spectrum can be fitted with a power law (of energy index 1.4(+0.8, -0.6) with low-energy photoelectric absorption in excess of the Galactic value that, if at the redhsift of the quasar, would have a column density of (0.9(+0.8, -0.6)) x 10(exp 22) atoms/sq cm. Possible sites for the absorption are a nuclear torus, an intervening damped Lyman-alpha system, or intracluster material (e.g., a cooling flow) around the quasar. The implied absorbing column density is sufficient to redden a normal quasar spectrum to the observed steep optical slope. The observed continuum, if dereddened by this amount, can produce the observed emission line fluxes and ratios. The absence of the graphite lambda-2175 feature in 3C 212 however, requires dust different from the local Milky Way composition, or an intervening absorber with z less than 0.4. Alternative acceptable fits to the X-ray spectrum are (1) a blackbody with a temperature of 0.7 keV (in the quasar frame) modified only by Galactic absorption, and (2) an optically thin thermal plasma with excess absorption. Although a blackbody spectrum would be unprecedented, the model is consistent with all the available X-ray and optical data and cannot be ruled out. We discuss possible observations that can discriminate among the above models.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 425; 1; p. 103-109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-08-28
    Description: UV stellar photometry is presented for 1563 stars within a 40 minutes circular field in the Large Magellanic Cloud (LMC), excluding the 10 min x 10 min field centered on R136 investigated earlier by Hill et al. (1993). Magnitudes are computed from images obtained by the Ultraviolet Imaging Telescope (UIT) in bands centered at 1615 A and 2558 A. Stellar masses and extinctions are estimated for the stars in associations using the evolutionary models of Schaerer et al. (1993), assuming the age is 4 Myr and that the local LMC extinction follows the Fitzpatrick (1985) 30 Dor extinction curve. The estimated slope of the initial mass function (IMF) for massive stars (greater than 15 solar mass) within the Lucke and Hodge (LH) associations is Gamma = -1.08 +/- 0.2. Initial masses and extinctions for stars not within LH associations are estimated assuming that the stellar age is either 4 Myr or half the stellar lifetime, whichever is larger. The estimated slope of the IMF for massive stars not within LH associations is Gamma = -1.74 +/- 0.3 (assuming continuous star formation), compared with Gamma = -1.35, and Gamma = -1.7 +/- 0.5, obtained for the Galaxy by Salpeter (1955) and Scalo (1986), respectively, and Gamma = -1.6 obtained for massive stars in the Galaxy by Garmany, Conti, & Chiosi (1982). The shallower slope of the association IMF suggests that not only is the star formation rate higher in associations, but that the local conditions favor the formation of higher mass stars there. We make no corrections for binaries or incompleteness.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 425; 1; p. 122-126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-08-28
    Description: Two-color ultraviolet images of the globular cluster NGC 1851 were obtained with the Ultraviolet Imaging Telescope (UIT) during the 1990 December Astro-1 Spacelab mission. A total of 133 stars are detected at 2490 A and 74 stars at 1520 A. An ultraviolet color-magnitude diagram based on the 46 well-photometered stars that appear in both images is presented. Thirty-nine of the 45 horizontal branch (HB) stars fall below the zero-age horizontal branch (ZAHB) of Z = 0.001 and Y = 0.23 predicted by Sweigart by as much as 0.6 mag if the interstellar reddening to the cluster is E(B - V) = 0.02. Supporting ground-based V and B observations, however, show excellent correlation with the same model ZAHB. A newly detected hot subdwarf star with T(sub eff) is approximately 26,000 K appears to be an extreme horizontal branch star. The measured flux for this star also falls approximately 0.6 mag below the position on the color-magnitude diagrams (CMD) predicted by parameters derived from ground-based spectroscopy by Landsman. The far-ultraviolet image is dominated by the ultraviolet-bright member star UV 5, which contributes 30% of the total flux at 1520 A. The UIT photometry is consistent with the classification of UV 5 as a post-asymptotic giant branch (PAGB) star. To a limit of 16.5 mag at 1520 A we find no ultraviolet counterpart within 6 minutes of the position of the X-ray source MX 0513-40.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 423; 1; p. 305-309
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-28
    Description: We have studied the number of cataclysmic variables (CVs) that should be active in globular clusters during the present epoch as a result of binary formation via two-body tidal capture. We predict the orbital period and luminosity distributions of CVs in globular clusters. The results arebased on Monte Carlo simulations combined with evolution calculations appropriate to each system formed during the lifetime of two specific globular clusters, omega Cen and 47 Tuc. From our study of these two clusters, which represent the range of core densities and states of mass segregation that are likely to be interesting, we extrapolate our results to the Galactic globlular cluster system. Although there is at present little direct observational evidence of CVs in globular clusters, we find that there should be a large number of active systems. We predict that there should be more than approximately 100 CVs in both 47 Tuc and omega Cen and several thousand in the Galactic globular cluster system. These numbers are based on two-body processes alone and represent a lower bound on the number of systems that may have been formed as a result of stellar interaction within globular clusters. The relation between these calculations and the paucity of optically detected CVs in globular clusters is discussed. Should future observations fail to find convincing evidence of a substantial population of cluster CVs, then the two-body tidal capture scenario is likely to be seriously constrained. Of the CVs we espect in 47 Tuc and omega Cen, approximately 45 and 20, respectively, should have accretion luminosities above 10(exp 33) ergs/s. If one utilizes a relation for converting accretion luminosity to hard X-ray luminosity that is based on observations of Galactic plane CVs, even these sources will not exhibit X-ray luminosities above 10(exp 33) ergs/s. While we cannot account directly for the most luminous subset of the low-luminosity globular cluster X-ray sources without assuming an evolutionary pattern that is different from that of the majority of CVs in the disk, we are able to account for all of the observed lower luminosity subset of these sources, many of which have been recently discovered through ROSAT observations. In order for our predicted integrated cluster X-ray luminosities to be consistent with observational upper limits, the relation between accretion and X-ray luminosities should be something like that inferred from the Galactic plane population of CVs. Our calculations predict a large number of systems with L(sub acc) is less than 10(exp 32) ergs/s. Although our calculations imply that globular clusters should have an enhancement of CVs relative to the number thought to be present in the Galactic disk, this enhancement is at most roughly an order of magnitude, not comparable to the factor of approximately 100 for low-mass X-ray binaries (LMXBs).
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 423; 1; p. 274-293
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-28
    Description: We present new optical Charge Coupled Devices (CCD) interference filter imagery and International Ultraviolet Explorer (IUE) spectroscopy for the oxygen-rich supernova remnant N132D in the Large Magellanic Cloud. The optical images show a wealth of structure, and comparison with an archival Einstein High Resolution Imager (HRI) X-ray image shows that a few optical features have X-ray counter-parts, but in general there is little correlation between X-ray and optical features. The IUE spectra at two positions show strong lines of carbon and oxygen, with lines of neon, magnesium, silicon, and helium also present and variable in relative intensities. We use optical data for N132D from Dopita & Tuohy (1984) with our UV observations to compare with shock models (both with and without thermal conduction) and X-ray photoionization model calculations. While none of the model fits is entirely satisfactory, the generally weak UV emission relative to optical disagrees with the general character of shock model predictions and indicates that photoionization is the dominant excitation mechanism for the UV/optical emission. This conclusion is similar to what was found for E0102 - 7219, the oxygen-rich remnant in the Small Magellanic Cloud. We derive rough abundances for the emitting material in N132D, compare to stellar nucleosynthesis models, and discuss the implications for its precursor. A precursor near 20 solar mass is consistent with the data.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 423; 1; p. 334-343
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-28
    Description: Using synthetic horizontal-branch models, we have investigated the origin of the systematic variation in horizontal-branch (HB) morphology with galactocentric distance (R(sub G)) among globular clusters. The variations in He abundance, CNO abundance, and core mass required separately to explain this effect are inconsistent with either the observed properties of the RR Lyrae variables or the observed main-sequence turnoffs in the clusters. There is also no clear evidence that the trend with R(sub G) is related to the central concentrations, central densities, or absolute magnitudes of the clusters. The variations in cluster age required to explain this effect are not in conflict with any observations. A detailed comparison of our synthetic HB calculations with pairs of clusters of very different HB morphology but similar (Fe/H) reveals reasonably good agreement between the age differences inferred from HB morphology and the main-sequence turnoff. The major source of uncertainty is the need for ad hoc hypotheses in the modeling of the HB morphologies of a few peculiar clusters (e.g., NGC 6752). Nonetheless, there is firm evidence for age variations of several gigayears (as much as approximately 5 Gyr) among the halo globular clusters. Our results support the hypothesis of Searle & Zinn that the inner halo is more uniform in age and is older in the mean than the outer halo, and we estimate this difference to be approximately 2 Gyr.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 423; 1; p. 248-265
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-28
    Description: We have made a comparison of the X-ray and radio morphologies for a sample of 41 rich cluster fields using Einstein Observatory Imaging Proportional Counter (IPC) and Very Large Array (VLA) 20 cm images. Surprisingly, we find that 75% of the radio galaxies have a statistically significant X-ray peak or subclump within 5 min of the radio galaxy position. The X-ray luminosity and the generally extended nature of the X-ray subclumps suggest that these subclumps are overdense regions emitting free-free radiation, although there is also evidence for Active Galactic Nuclei (AGN) X-ray emission coming from some of the more compact, high surface brightness X-ray peaks. Some interesting correlations with radio morphology were also discovered. For clusters which contain wide-angle-tailed radio sources associated with centrally dominant galaxies, there are significant elongations or clumps in the central X-ray emission which are unusual for this type of cluster. We suggest that cluster radio galaxies are pointers to particular clusters or regions within clusters that have recently undergone mergers between cluster subsystems.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 423; 1; p. 94-115
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-28
    Description: Recent high-energy gamma-ray observations (E(sub gamma) greater than 100 MeV) of blazar Active Galactic Nuclei (AGNs) show emission spectra with no clear upper energy cutoff. AGNs, considered to be possible sources for the observed flux of cosmic rays beyond 10(exp 19) eV, may well have emission extending into the very high energy (VHE), (E(sub gamma) greater than 100 GeV) domain. Because VHE gamma-rays are absorbed by pair production on the intergalactic background radiation fields, much of this emission may not be directly visible. The electromagnetic cascades initiated by absorbed VHE gamma-rays, however, may be observable. Since, most probably, the velocities of (e(+), e(-)) pairs produced in a cascade are quickly isotropized by an ambient random magnetic field, extended 'halos' (R greater than 1 Mpc) of pairs will be formed around AGNs with VHE emission. The cascade radiation from these pair halos is emitted isotropically and should be observable at energies below a few TeV. The halo radiation can be distinguished by its characteristic variation in spectrum and intensity with angular distance from the central source. This variation depends weakly on the details of the central source model, e.g., the orientation and beaming/opening angle of an emitting jet. Limiting or determining the intensity of the pair halo can thus serve as a model-independent bound on or measure of the VHE power of AGNs. Next-generation Cherenkov telescopes may be able to image a pair halo.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 423; 1; p. L5-L8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-28
    Description: We have derived an analytic solution to the asymptotic behavior of dipolar magnetic fields that are generated in the crusts of neutron stars. We show that if the conductivity is due to impurity scattering, as expected for late stages of evolution, the surface field strength at the magnetic pole declines with the power law B(sub p) approximately = (t/t(sub 0))(exp -2/3). The results are shown to be qualitatively consistent with detailed numerical calculations. These latter results are consistent with some recent analyses of pulsar statistics and the magnetic fields of several binary pulsars with white dwarf companions whose ages have been determined. The dependence of the surface magnetic field on spin period of the pulsar is derived.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 2; p. 780-785
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-08-28
    Description: We study the interaction of a steady, planar shock with a nonradiative, spherical, interstellar cloud threaded by a uniform magnetic field. For strong shocks, the sonic Mach number scales out, so two parameters determine the evolution: the ratio of cloud to intercloud density, and the Alfven Mach number. We focus on the case with initial field parallel to the shock velocity, though we also present one model with field perpendicular to the velocity. Even with 100 zones per cloud radius, we find that the magnetic field structure converges only at early times. However, we can draw three conclusions from our work. First, our results suggest that the inclusion of a field in equipartition with the preshock medium can prevent the complete destruction of the cloud found in the field-free case recently considered by Klein, McKee, & Colella. Second, the interaction of the shock with the cloud can amplify the magnetic field in some regions up to equipartition with the post-shock thermal pressure. In the parallel-field case, the shock preferentially amplifies the parallel component of the field, creating a 'flux rope,' a linear structure of concentrated magnetic field. The flux rope dominates the volume of amplified field, so that laminar, rather than turbulent, amplification is dominant in this case. Third, the presence of the cloud enhances the production of X-ray and synchrotron emission. The X-ray emission peaks early, during the initial passage of the shock over the cloud, while the synchrotron emission peaks later, when the flow sweeps magnetic field onto the axis between the cloud and the main shock.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 2; p. 757-777
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-28
    Description: We consider the possibility that approximately 10% of the mass of a typical galaxy halo is in the form of massive (approximately 10(exp 7) solar masses), compact (escape speeds approximately 100 km/s) baryonic clusters made of neutron stars (approximately 10% by mass), black holes (less than or approximately equal to 1%) and brown dwarfs, asteroids, and other low-mass debris (approximately 90%). These general properties are consistent with several different observational and phenomenological constraints on cluster properties subject to the condition that neutron stars comprise approximately 1% of the total halo mass. Such compact, dark clusters could be the sites of a variety of collisional phenomena involving neutron stars. We find that integrated out to the Hubble distance approximately one neutron star-neutron star or neutron star-black hole collision occurs daily. Of order 0.1-1 asteroid-neutron star collisions may also happen daily in the halo of the Milky Way if there is roughly equal cluster mass per logarithmic particle mass interval between asteroids and brown dwarfs. These event rates are comparable to the frequency of gamma-ray burst detections by the Burst and Transient Source Experiment (BATSE) on the Compton Observatory, implying that if dark halo clusters are the sites of most gamma-ray bursts, perhaps approximately 90% of all bursts are extragalactic, but approximately 10% are galactic. It is possible that dark clusters of the kind discussed here could be detected directly by the Infrared Space Observatory (ISO) or Space Infrared Telescope Facility (SIRTF). If the clusters considered in this paper exist, they should produce spatially correlated gravitational microlensing of stars in the Large Magellanic Cloud (LMC). If 10% of the halo is in the form of dark baryonic clusters, and the remaining 90% is in brown dwarfs and other dark objects which are either unclustered or collected into low-mass clusters, then we expect that two events within approximately 1 min of one another are likely to be seen after a total of order 20-30 microlenses have been detected.
    Keywords: ASTROPHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 433; 2; p. 670-686
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-28
    Description: We have mapped the Large Magellanic Cloud (the LMC) in the (C II) 158 microns fine-structure line with the Balloon-borne Infrared Carbon Explorer (BICE) system. The (C II) line emission was detected over most of the LMC. The mean (C II)/CO (J = 1-0) line intensity ratio was 23,000 18 times larger than the typical value observed in the Galactic plane (1300). This result implies that each clump of the molecular clouds in the LMC has a larger C(+) envelope relative to its CO core than those in our Galaxy. Lower dust abundance due to its lower metallicity allows UV photons, which convert CO molecules into C(+) ions, to penetrate deeper into the clumps in the LMC than in our Galaxy.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 430; 1; p. L37-L40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-28
    Description: The nonstandard cooling of a neutron star with the central pion core is explored. By adopting the latest results from the pion condensation theory, neutrino emissivity is calulated for both pure charged pions and a mixture of charged and neutral pions, and the equations of state are constructed for the pion condensate. The effect of superfluidity on cooling is investigated, adopting methods more realistic than in previous studies. Our theoretical models are compared with the currently updated observational data, and possible implications are explored.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 431; 1; p. 309-320
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-28
    Description: Grain-grain collisions and ion sputtering destroy dust grains in interstellar shocks. An analytical theory is developed for the propagation of shock waves in solids driven by grain-grain collisions, which compares very favorably with detailed numerical calculations. This theory is used to determine the fraction of grain vaporized by a grain-grain collision. Our results predict much less vaporization of colliding grains in interstellar shocks than previous estimates. This theory can also be used to determine the fraction of a colliding grain that melts, shatter, or undergoes a phase transformation to a higher density phase. In particular, the latter two processes can be much more important in interstellar shocks than vaporization. The sputtering of grains by impacting gas ions is reanalyzed based upon extensive laboratory studies and a theoretically derived 'universal'sputtering relation. The analytical results are compared to available experimental studies of sputtering of graphite/amorphous carbon, SiO2, SiC, Fe, and H2O. Sputtering yields for astrophysically relevant materials as a function of impact energy and ion mass are derived. These yields are also averaged over thermal impact spectrum and simple polynomial fits to the resulting yields as a function of temperature are presented. The derived sputtering yields are similar to those adopted in previous studies, except for graphite near threshold where the new yields are much larger due to a lower adopted binding energy. The ion bombardment will amorphitize the surface layers of interstellar grains. It will also convert graphite into hydrogenated amorphous carbon (HAC) to a depth of 10-20 A. It is suggested that these HAC surfaces are the carriers of the 3.4 micrometer absorption feature in the interstellar medium.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 431; 1; p. 321-340
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-08-28
    Description: Results from a combination of new spectroscopic and photometric observations in the lower main sequence and pre-main sequence of the open cluster alpha Persei are presented. New echelle spectroscopy has provided radial and rotational velocity information for thirteen candidate members, three of which are nonmembers based on radial velocity, absence of a Li 6707 A feature, and absence of H alpha emission. A set of revised rotational velocity estimates for several slowly rotating candidates identified earlier is given, yielding rotational velocities as low as 7 km/s for two apparent cluster members. VI photometry for several pre-main-sequence members is given; the new (V, V-I(sub K) photometry yields a more clearly defined pre-main sequence. A list of approximately 30 new faint candidate members based on the (V, V-I(sub K)), charge coupled device (CCD) photometry is presented in an effort to identify additional cluster members at very low masses. Low-dispersion spectra obtained for several of these candidates provide in some cases supporting evidence for cluster membership. The single brown dwarf candidate in this cluster is for the first time placed in a color-magnitude diagram with other cluster members, providing a better means for establishing its true status. Stars from among the list of new photometric candidates may provide the means for establishing a sequence of cluster members down to very faint magnitudes (V approximately 21) and consequently very low masses. New coordinate determinations for previous candidate members and finding charts for the new photometric candidates are provided in Appendices.
    Keywords: ASTROPHYSICS
    Type: The Astronomical Journal (ISSN 0004-6256); 107; 4; p. 1422-1432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...