ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Caro, Tim -- Sherman, Paul -- England -- Nature. 2009 Dec 24;462(7276):985. doi: 10.1038/462985b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033023" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Wild ; *Conservation of Natural Resources/methods ; *Ecosystem
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-12-25
    Description: Riverine organic matter supports of the order of one-fifth of estuarine metabolism. Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material. This view is developed exclusively from work in watersheds where terrestrial plant and soil sources dominate streamwater DOM. Here we characterize streamwater DOM from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0-64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantly correlated with increasing (14)C age. Moreover, the most heavily glaciated watersheds are the source of the oldest ( approximately 4 kyr (14)C age) and most labile (66 per cent bioavailable) DOM. These glacial watersheds have extreme runoff rates, in part because they are subject to some of the highest rates of glacier volume loss on Earth. We estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 +/- 0.01 Tg yr(-1) (1 Tg = 10(12) g), of which approximately 0.10 Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hood, Eran -- Fellman, Jason -- Spencer, Robert G M -- Hernes, Peter J -- Edwards, Rick -- D'Amore, David -- Scott, Durelle -- England -- Nature. 2009 Dec 24;462(7276):1044-7. doi: 10.1038/nature08580.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Environmental Science and Geography Program, University of Alaska Southeast, Juneau, Alaska 99801, USA. eran.hood@uas.alaska.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033045" target="_blank"〉PubMed〈/a〉
    Keywords: Alaska ; Carbon/analysis ; *Ecosystem ; Fresh Water/*chemistry ; Humic Substances/*analysis ; *Ice Cover/chemistry ; Marine Biology ; Pacific Ocean ; Spectrometry, Fluorescence ; Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokstad, Erik -- New York, N.Y. -- Science. 2009 Dec 18;326(5960):1618. doi: 10.1126/science.326.5960.1618.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20019268" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Conservation of Natural Resources ; *Ecosystem ; Oceans and Seas ; *Public Policy ; *Seawater ; United States ; United States Government Agencies/organization & administration
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2009 Dec 17;462(7275):834-5. doi: 10.1038/462834a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016566" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; Congresses as Topic ; Conservation of Natural Resources/methods/trends ; Denmark ; *Ecosystem ; Forestry/methods/trends ; Global Warming/prevention & control ; *Internationality ; *Spacecraft ; Trees/*growth & development ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-12-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Louys, Julien -- Bishop, Laura C -- Wilkinson, David M -- England -- Nature. 2009 Dec 17;462(7275):847. doi: 10.1038/462847b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016575" target="_blank"〉PubMed〈/a〉
    Keywords: *Biological Evolution ; Ecology/*trends ; *Ecosystem ; Fossils ; Paleontology/*trends ; Research/*trends
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-17
    Description: Biota can be described in terms of elemental composition, expressed as an atomic ratio of carbon:nitrogen:phosphorus (refs 1-3). The elemental stoichiometry of microoorganisms is fundamental for understanding the production dynamics and biogeochemical cycles of ecosystems because microbial biomass is the trophic base of detrital food webs. Here we show that heterotrophic microbial communities of diverse composition from terrestrial soils and freshwater sediments share a common functional stoichiometry in relation to organic nutrient acquisition. The activities of four enzymes that catalyse the hydrolysis of assimilable products from the principal environmental sources of C, N and P show similar scaling relationships over several orders of magnitude, with a mean ratio for C:N:P activities near 1:1:1 in all habitats. We suggest that these ecoenzymatic ratios reflect the equilibria between the elemental composition of microbial biomass and detrital organic matter and the efficiencies of microbial nutrient assimilation and growth. Because ecoenzymatic activities intersect the stoichiometric and metabolic theories of ecology, they provide a functional measure of the threshold at which control of community metabolism shifts from nutrient to energy flow.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sinsabaugh, Robert L -- Hill, Brian H -- Follstad Shah, Jennifer J -- England -- Nature. 2009 Dec 10;462(7274):795-8. doi: 10.1038/nature08632.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biology Department, University of New Mexico, Albuquerque, New Mexico 871312, USA. rlsinsab@unm.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20010687" target="_blank"〉PubMed〈/a〉
    Keywords: Biomass ; Carbon/*metabolism ; *Ecosystem ; Enzyme Assays ; Enzymes/*metabolism ; Food Chain ; Geologic Sediments/*chemistry/microbiology ; Nitrogen/*metabolism ; Phosphorus/*metabolism ; Plants/metabolism ; Rivers ; *Soil Microbiology ; United States ; Wetlands
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Opperman, Jeffrey J -- Galloway, Gerald E -- Fargione, Joseph -- Mount, Jeffrey F -- Richter, Brian D -- Secchi, Silvia -- New York, N.Y. -- Science. 2009 Dec 11;326(5959):1487-8. doi: 10.1126/science.1178256.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Nature Conservancy, Arlington, VA 22203, USA. jopperman@tnc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20007887" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; Conservation of Natural Resources ; *Ecosystem ; *Floods ; Public Policy ; *Rivers ; Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2009-12-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kutz, Susan J -- Dobson, Andy P -- Hoberg, Eric P -- New York, N.Y. -- Science. 2009 Nov 27;326(5957):1187-8. doi: 10.1126/science.326.5957.1187-b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965449" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arctic Regions/epidemiology ; *Climate Change ; *Ecosystem ; Host-Parasite Interactions ; Parasites/growth & development/*physiology ; Parasitic Diseases, Animal/epidemiology/parasitology/transmission ; Population Dynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-12-08
    Description: Bacteria-mediated acquisition of atmospheric N2 serves as a critical source of nitrogen in terrestrial ecosystems. Here we reveal that symbiotic nitrogen fixation facilitates the cultivation of specialized fungal crops by leaf-cutter ants. By using acetylene reduction and stable isotope experiments, we demonstrated that N2 fixation occurred in the fungus gardens of eight leaf-cutter ant species and, further, that this fixed nitrogen was incorporated into ant biomass. Symbiotic N2-fixing bacteria were consistently isolated from the fungus gardens of 80 leaf-cutter ant colonies collected in Argentina, Costa Rica, and Panama. The discovery of N2 fixation within the leaf-cutter ant-microbe symbiosis reveals a previously unrecognized nitrogen source in neotropical ecosystems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pinto-Tomas, Adrian A -- Anderson, Mark A -- Suen, Garret -- Stevenson, David M -- Chu, Fiona S T -- Cleland, W Wallace -- Weimer, Paul J -- Currie, Cameron R -- GM 18938/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1120-3. doi: 10.1126/science.1173036.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965433" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylene/metabolism ; Animals ; Ants/metabolism/microbiology/*physiology ; Argentina ; Costa Rica ; *Ecosystem ; Fungi/growth & development/*physiology ; Klebsiella/isolation & purification/*metabolism ; Molecular Sequence Data ; Nitrogen/analysis/metabolism ; *Nitrogen Fixation ; Oxidation-Reduction ; Panama ; Pantoea/isolation & purification/*metabolism ; Phylogeny ; Plant Leaves/chemistry ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-08
    Description: The interactive effects of rising atmospheric carbon dioxide (CO2) concentrations and elevated nitrogen (N) deposition on plant diversity are not well understood. This is of concern because both factors are important components of global environmental change and because each might suppress diversity, with their combined effects possibly additive or synergistic. In a long-term open-air experiment, grassland assemblages planted with 16 species were grown under all combinations of ambient and elevated CO2 and ambient and elevated N. Over 10 years, elevated N reduced species richness by 16% at ambient CO2 but by just 8% at elevated CO2. This resulted from multiple effects of CO2 and N on plant traits and soil resources that altered competitive interactions among species. Elevated CO2 thus ameliorated the negative effects of N enrichment on species richness.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reich, Peter B -- New York, N.Y. -- Science. 2009 Dec 4;326(5958):1399-402. doi: 10.1126/science.1178820.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Forest Resources, University of Minnesota, 1530 Cleveland Avenue North, St. Paul, MN 55108, USA. preich@umn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965757" target="_blank"〉PubMed〈/a〉
    Keywords: Anemone/growth & development/metabolism ; Asclepias/genetics/metabolism ; Asteraceae/growth & development/metabolism ; *Atmosphere ; *Biodiversity ; Biomass ; *Carbon Dioxide ; *Ecosystem ; Fabaceae/growth & development/metabolism ; Light ; Minnesota ; *Nitrogen/metabolism ; Nitrogen Fixation ; Plant Development ; *Plants/metabolism ; Poaceae/growth & development/metabolism ; Soil/analysis ; Water/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...