ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 32 (1999), S. 321-341 
    ISSN: 1573-0387
    Keywords: molecular biology ; molecular evolution ; natural history ; phylogeny ; systematics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract Biologists and historians often present natural history and molecular biology as distinct, perhaps conflicting, fields in biological research. Such accounts, although supported by abundant evidence, overlook important areas of overlap between these areas. Focusing upon examples drawn particularly from systematics and molecular evolution, I argue that naturalists and molecular biologists often share questions, methods, and forms of explanation. Acknowledging these interdisciplinary efforts provides a more balanced account of the development of biology during the post-World War II era.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 32 (1999), S. 133-162 
    ISSN: 1573-0387
    Keywords: McClintock ; Barbara ; maize ; corn ; genetics ; transposable elements ; controlling elements ; gene expression regulation ; women scientists ; development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract In the standard narrative of her life, Barbara McClintock discovered genetic transposition in the 1940s but no one believed her. She was ignored until molecular biologists of the 1970s “rediscovered” transposition and vindicated her heretical discovery. New archival documents, as well as interviews and close reading of published papers, belie this narrative. Transposition was accepted immediately by both maize and bacterial geneticists. Maize geneticists confirmed it repeatedly in the early 1950s and by the late 1950s it was considered a classic discovery. But for McClintock, movable elements were part of an elaborate system of genetic control that she hypothesized to explain development and differentiation. This theory was highly speculative and was not widely accepted, even by those who had discovered transposition independently. When Jacob and Monod presented their alternative model for gene regulation, the operon, her controller argument was discarded as incorrect. Transposition, however, was soon discovered in microorganisms and by the late 1970s was recognized as a phenomenon of biomedical importance. For McClintock, the award of the 1983 Nobel Prize to her for the discovery of movable genetic elements, long treated as a legitimation, may well have been bittersweet. This new look at McClintock's experiments and theory has implications for the intellectual history of biology, the social history of American genetics, and McClintock's role in the historiography of women in science.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 32 (1999), S. 163-195 
    ISSN: 1573-0387
    Keywords: cytogenetics ; diagrams ; genetics ; illustrations ; McClintock ; models ; molecular biology ; photographs ; twentieth-century ; United States
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract Barbara McClintock won the Nobel Prize in 1983 for her discovery of mobile genetic elements. Her Nobel work began in 1944, and by 1950 McClintock began presenting her work on “controlling elements.” McClintock performed her studies through the use of controlled breeding experiments with known mutant stocks, and read the action of controlling elements (transposons) in visible patterns of pigment and starch distribution. She taught close colleagues to “read” the patterns in her maize kernels, “seeing” pigment and starch genes turning on and off. McClintock illustrated her talks and papers on controlling elements or transposons with photographs of the spotted and streaked maize kernels which were both her evidence and the key to her explanations. Transposon action could be read in the patterns by the initiated, but those without step by step instruction by McClintock or experience in maize often found her presentations confusing. The photographs she displayed became both McClintock's means of communication, and a barrier to successful presentation of her results. The photographs also had a second and more subtle effect. As images of patterns arrived at through growth and development of the kernel, they highlight what McClintock believed to be the developmental consequences of transposition, which in McClintock's view was her central contribution, over the mechanism of transposition, for which she was eventually recognized by others. Scientific activities are extremely visual, both at the sites of investigation and in communication through drawings, photographs, and movies. Those visual messages deserve greater scrutiny by historians of science.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of the history of biology 33 (2000), S. 27-70 
    ISSN: 1573-0387
    Keywords: ants ; E. O. Wilson ; Ernst Mayr ; systematics ; Systematics and the Origin of Species ; taxonomy ; William L. Brown ; William Morton Wheeler ; William Steel Creighton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , History
    Notes: Abstract Ideas about the natural world are intertwined with the personalities, practices, and the workplaces of scientists. The relationships between these categories are explored in the life of the taxonomist William Steel Creighton. Creighton studied taxonomy under William Morton Wheeler at Harvard University. He took the rules he learned from Wheeler out of the museum and into the field. In testing the rules against a new situation, Creighton found them wanting. He sought a new set of taxonomic principles, one he eventually found in Ernst Mayr's Systematics and the Origin of Species. Mayr's ideas tied together a number of themes running through Creighton's life: the need for a revised taxonomy, the emphasis on fieldwork, and the search for a new power center for ant taxonomy after Wheeler died. Creighton's adoption of Mayr's ideas as part of his professional identity also had very real implications for his career path: field studies required long and intensive studies, and Creighton would always be a slow worker. His method of taxonomy contrasted sharply not only with Wheeler's but also with two of his younger colleagues, William L. Brown and E. O. Wilson, who took over Wheeler's spot at Harvard in 1950. The disputes between these men over ant taxonomy involved, in addition to questions of technical interest, questions about where and how best to do taxonomy and who could speak withthe most authority. Creighton's story reveals how these questions are interrelated. The story also reveals the importance of Mayr's book for changes occurring in taxonomy in the middle of the twentieth century.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...