ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)  (147)
  • Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie  (50)
  • 1
    Publication Date: 2024-02-07
    Description: Dimethyl sulfide (DMS), dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) were measured at the Boknis Eck Time Series Station (BE, Eckernförde Bay, SW Baltic Sea) during the period February 2009–December 2018. Our results show considerable interannual and seasonal variabilities in the mixed-layer concentrations of DMS, total DMSP (DMSPt) and total DMSO (DMSOt). Positive correlations were found between particulate DMSP (DMSPp) and particulate DMSO (DMSOp) as well as DMSPt and DMSOt in the mixed layer, suggesting a similar source for both compounds. The decreasing long-term trends, observed for DMSPt and DMS in the mixed layer, were linked to the concurrent trend of the sum of 19′-hexanoyloxyfucoxanthin and 19′-butanoyloxy-fucoxanthin, which are the marker pigments of prymnesiophytes and chrysophytes, respectively. Major Baltic inflow (MBI) events influenced the distribution of sulfur compounds due to phytoplankton community changes, and sediment might be a potential source for DMS in the bottom layer during seasonal hypoxia/anoxia at BE. A modified algorithm based on the phytoplankton pigments reproduces the DMSPp : Chl a ratios well during this study and could be used to estimate future surface (5 m) DMSPp concentrations at BE.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Coastal areas contribute significantly to the emissions of methane (CH4) from the ocean. In order to decipher its temporal variability in the whole water column, dissolved CH4 was measured on a monthly basis at the Boknis Eck Time-series Station (BE) located in the Eckernförde Bay (SW Baltic Sea) from 2006 to 2017. BE has a water depth of about 28 m and dissolved CH4 was measured at six water depths ranging from 0 to 25 m. In general CH4 concentrations increased with depth, indicating a sedimentary release of CH4. Pronounced enhancement of the CH4 concentrations in the bottom layer (15–25 m) was found during February, May–June and October. CH4 was not correlated with Chlorophyll a or O2 over the measurement period. Unusually high CH4 concentrations (of up to 696 nM) were sporadically observed in the upper layer (0–10 m) (e.g. in November 2013 and December 2014) and were coinciding with Major Baltic Inflow (MBI) events. Surface CH4 concentrations were always supersaturated throughout the monitoring period, indicating that the Eckernförde Bay is an intense but highly variable source of atmospheric CH4. We did not detect significant temporal trends in CH4 concentrations or emissions, despite of ongoing environmental changes such as warming and deoxygenation in the Eckernförde Bay. Overall, the CH4 variability at BE is driven by a complex interplay of various biological and physical processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-01
    Description: The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated, simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes.Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA’s long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high altitude observations from the NASA Global Hawk platform. The models generally capture the seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) and a low sensitivity to the choice of emission inventory, at most sites. In a given model, the absolute model-measurement agreement is highly sensitive to the choice of emissions and inter-model differences are also apparent, even when using the same inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve optimal agreement to surface CHBr3 observations using the lowest of the three CHBr3 emission inventories tested (similarly, 8 out of 11 models for CH2 Br2). In general, the models are able to reproduce well observations of CHBr3 and CH2 Br2 obtained in the tropical tropopause layer (TTL) at various locations throughout the Pacific. Zonal variability in VSLS loading in the TTL is generally consistent among models, with CHBr3 (and to a lesser extent CH2 Br2) most elevated over the tropical West Pacific during boreal winter. The models also indicate the Asian Monsoon during boreal summer to be an important pathway for VSLS reaching the stratosphere, though the strength of this signal varies considerably among models. We derive an ensemble climatological mean estimate of the stratospheric bromine SGI from CHBr3 and CH2 Br2 of 2.0 (1.2-2.5) ppt, ≫ 57% larger than the best estimate from the most recent World Meteorological Organization (WMO) Ozone Assessment Report. We find no evidence for a long-term, transport-driven trend in the stratospheric SGI of bromine over the simulation period. However, transport-driven inter-annual variability in the annual mean bromine SGI is of the order of a ±5%, with SGI exhibiting a strong positive correlation with ENSO in the East Pacific.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-04-06
    Description: Nitrous oxide (N2O) is a potent greenhouse gas, and it is involved in stratospheric ozone depletion. Its oceanic production is mainly influenced by dissolved nutrient and oxygen (O2) concentrations in the water column. Here we examined the seasonal and annual variations in dissolved N2O at the Boknis Eck (BE) Time Series Station located in Eckernförde Bay (southwestern Baltic Sea). Monthly measurements of N2O started in July 2005. We found a pronounced seasonal pattern for N2O with high concentrations (supersaturations) in winter and early spring and low concentrations (undersaturations) in autumn when hypoxic or anoxic conditions prevail. Unusually low N2O concentrations were observed during October 2016–April 2017, which was presumably a result of prolonged anoxia and the subsequent nutrient deficiency. Unusually high N2O concentrations were found in November 2017 and this event was linked to the occurrence of upwelling which interrupted N2O consumption via denitrification and potentially promoted ammonium oxidation (nitrification) at the oxic–anoxic interface. Nutrient concentrations (such as nitrate, nitrite and phosphate) at BE have been decreasing since the 1980s, but oxygen concentrations in the water column are still decreasing. Our results indicate a close coupling of N2O anomalies to O2 concentration, nutrients, and stratification. Given the long-term trends of declining nutrient and oxygen concentrations at BE, a decrease in N2O concentration, and thus emissions, seems likely due to an increasing number of events with low N2O concentrations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Ice-nucleating particles (INPs) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSAs), produced upon bursting of bubbles at the ocean surface, can be an important source of marine INPs, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using natural seawater spiked with nutrients have revealed that marine INPs are derived from two separate classes of organic matter in SSAs. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting results from a field study and proposing a new parameterization of marine INPs that accounts for the two associated classes of organic matter. The PEACETIME cruise took place from 10 May to 10 June 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (INPSML) and in SSAs (INPSSA) produced using a plunging aquarium apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in parallel. The organic content of artificially generated SSAs was also evaluated. INPSML concentrations were found to be lower than those reported in the literature, presumably due to the oligotrophic nature of the Mediterranean Sea. A dust wet deposition event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line with increases in iron in the SML and bacterial abundances. Increases in INPSSA were not observed until after a delay of 3 days compared to increases in the SML and are likely a result of a strong influence of bulk SSW INPs for the temperatures investigated (T=−18 ∘C for SSAs, T=−15 ∘C for SSW). Results confirmed that INPSSA are divided into two classes depending on their associated organic matter. Here we find that warm (T≥−22 ∘C) INPSSA concentrations are correlated with water-soluble organic matter (WSOC) in the SSAs, but also with SSW parameters (particulate organic carbon, POCSSW and INPSSW,−16C) while cold INPSSA (T〈−22 ∘C) are correlated with SSA water-insoluble organic carbon (WIOC) and SML dissolved organic carbon (DOC) concentrations. A relationship was also found between cold INPSSA and SSW nano- and microphytoplankton cell abundances, indicating that these species might be a source of water-insoluble organic matter with surfactant properties and specific IN activities. Guided by these results, we formulated and tested multiple parameterizations for the abundance of INPs in marine SSAs, including a single-component model based on POCSSW and a two-component model based on SSA WIOC and OC. We also altered a previous model based on OCSSA content to account for oligotrophy of the Mediterranean Sea. We then compared this formulation with the previous models. This new parameterization should improve attempts to incorporate marine INP emissions into numerical models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: On 24 March 2007, an extraordinary dust plume was observed in the Central European troposphere. Satellite observations revealed its origins in a dust storm in Southern Ukraine, where large amounts of soil were resuspended from dried-out farmlands at wind gusts up to 30 m s?1. Along the pathway of the plume, maximum particulate matter (PM10) mass concentrations between 200 and 1400 ?g m?3 occurred in Slovakia, the Czech Republic, Poland, and Germany. Over Germany, the dust plume was characterised by a volume extinction coefficient up to 400 Mm?1 and a particle optical depth of 0.71 at wavelength 0.532 ?m. In-situ size distribution measurements as well as the wavelength dependence of light extinction from lidar and Sun photometer measurements confirmed the presence of a coarse particle mode with diameters around 2?3 ?m. Chemical particle analyses suggested a fraction of 75% crustal material in daily average PM10 and up to 85% in the coarser fraction PM10?2.5. Based on the particle characteristics as well as a lack of increased CO and CO2 levels, a significant impact of biomass burning was ruled out. The reasons for the high particle concentrations in the dust plume were twofold: First, dust was transported very rapidly into Central Europe in a boundary layer jet under dry conditions. Second, the dust plume was confined to a relatively stable boundary layer of 1.4?1.8 km height, and could therefore neither expand nor dilute efficiently. Our findings illustrate the capacity of combined in situ and remote sensing measurements to characterise large-scale dust plumes with a variety of aerosol parameters. Although such plumes from Southern Eurasia seem to occur rather infrequently in Central Europe, its unexpected features highlights the need to improve the description of dust emission, transport and transformation processes needs, particularly when facing the possible effects of further anthropogenic desertification and climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 11 . pp. 937-946.
    Publication Date: 2017-12-19
    Description: Nitric oxide (NO) is a short-lived intermediate of the oceanic nitrogen cycle, however, due to its high reactivity, measurements of dissolved NO in seawater are rare. Here we present an improved method to determine NO concentrations in discrete seawater samples. The set-up of our system consisted of a chemiluminescence NO analyser connected to a stripping unit. The limit of detection for our method was 5 pmol NO in aqueous solution which translates into 0.25 nmol L−1 when using a 20 mL seawater sample volume. Our method was applied to measure high resolution depth profiles of dissolved NO during a cruise to the eastern tropical South Pacific Ocean. Our method is fast and comparably easy to handle thus it opens the door for deciphering the distribution of NO in the ocean and it facilitates laboratory studies on NO pathways.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-07
    Description: A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: Are efficiency improvements in the use of natural resources the key for sustainable development, are they the solution to environmental problems, or will second round effects - so-called rebound effects - compensate or even overcompensate potential savings, will they fire back? The answer to this question will have fundamental policy implications but the research on rebound effects does not provide clear results. This paper aims to clarify the theoretical basis of various analytical approaches which lead to widely different estimates of rebound effects.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-06-20
    Description: Der Materialverbrauch entwickelter Volkswirtschaften wird von verschiedener Seite als zentraler Indikator für die ökologische Zukunftsfähigkeit industriellen Wirtschaftens angesehen: die vom Menschen verursachten Stoffströme seien zu hoch und müßten reduziert werden, um die Ökosphäre als Grundlage menschlichen Lebens und Wirtschaftens nachhaltig zu sichern. Am Wuppertal Institut wurden daher erstmals Zeitreihen verschiedener Kategorien des gesamtwirtschaftlichen Materialverbrauchs ermittelt und publiziert. Internationale Vergleichsdaten existieren für die USA, die Niederlande und Japan. In diesem Papier werden nun Vergleiche anderer Art angestellt: wie entwickelte sich in den letzten drei Jahrzehnten das ökologische Belastungspotential der deutschen Volkswirtschaft, gemessen an den Materialströmen, im Vergleich zu ökonomischen Eckdaten, wie dem realen Bruttoinlandsprodukt, der Beschäftigung, oder des Kapitalstocks. Das Ziel dieses Papiers besteht darin, die Zeitreihen dieser ökologischen Indikatoren denen solcher ökonomischer Größen gegenüberzustellen, mit denen sie in einem produktionstheoretischen Zusammenhang stehen. Auf Basis derartiger Arbeiten sind vertiefende und empirisch abgesicherte Aussagen zu einer Entkopplung des BIP vom Materialverbrauch sowie zu den Möglichkeiten eines technischen Fortschritts möglich, der arbeitsschaffend und umweltsparend verläuft.
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2023-02-08
    Description: A compilation of the published literature on dust content in terrestrial and marine sediment cores was synchronized with pollen data and speleothem growth phases on the Greenland Ice Core Chronology 2005 (GICC05) time axis. Aridity patterns for eight key areas of the global climate system have been reconstructed for the last 60 000 years. These records have different time resolutions and different dating methods, i.e. different types of stratigraphy. Nevertheless, all regions analysed in this study show humid conditions during early Marine Isotope Stage 3 (MIS3) and the early Holocene or deglaciation, but not always at the same time. Such discrepancies have been interpreted as regional effects, although stratigraphic uncertainties may affect some of the proposed interpretations. In comparison, most of the MIS2 interval becomes arid in all of the Northern Hemisphere records, but the peak arid conditions of the Last Glacial Maximum (LGM) and Heinrich event 1 differ in duration and intensity among regions. In addition, we also compare the aridity synthesis with modelling results using a global climate model (GCM). Indeed, geological archives and GCMs show agreement on the aridity pattern for the Holocene or deglaciation, for the LGM and for late MIS3.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-04-05
    Description: We examine the impact of horizontal resolution and model time step on the climate of the OpenIFS version 43r3 atmospheric general circulation model. A series of simulations for the period 1979–2019 are conducted with various horizontal resolutions (i.e. ∼100, ∼50, and ∼25 km) while maintaining the same time step (i.e. 15 min) and using different time steps (i.e. 60, 30, and 15 min) at 100 km horizontal resolution. We find that the surface zonal wind bias is significantly reduced over certain regions such as the Southern Ocean and the Northern Hemisphere mid-latitudes and in tropical and subtropical regions at a high horizontal resolution (i.e. ∼25 km). Similar improvement is evident too when using a coarse-resolution model (∼100 km) with a smaller time step (i.e. 30 and 15 min). We also find improvements in Rossby wave amplitude and phase speed, as well as in weather regime patterns, when a smaller time step or higher horizontal resolution is used. The improvement in the wind bias when using the shorter time step is mostly due to an increase in shallow and mid-level convection that enhances vertical mixing in the lower troposphere. The enhanced mixing allows frictional effects to influence a deeper layer and reduces wind and wind speed throughout the troposphere. However, precipitation biases generally increase with higher horizontal resolutions or smaller time steps, whereas the surface air temperature bias exhibits a small improvement over North America and the eastern Eurasian continent. We argue that the bias improvement in the highest-horizontal-resolution (i.e. ∼25 km) configuration benefits from a combination of both the enhanced horizontal resolution and the shorter time step. In summary, we demonstrate that, by reducing the time step in the coarse-resolution (∼100 km) OpenIFS model, one can alleviate some climate biases at a lower cost than by increasing the horizontal resolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-02-06
    Description: Reanalysis data sets are widely used to understand atmospheric processes and past variability, and are often used to stand in as "observations" for comparisons with climate model output. Because of the central role of water vapor (WV) and ozone (O3) in climate change, it is important to understand how accurately and consistently these species are represented in existing global reanalyses. In this paper, we present the results of WV and O3 intercomparisons that have been performed as part of the SPARC (Stratosphere–troposphere Processes and their Role in Climate) Reanalysis Intercomparison Project (S-RIP). The comparisons cover a range of timescales and evaluate both inter-reanalysis and observation-reanalysis differences. We also provide a systematic documentation of the treatment of WV and O3 in current reanalyses to aid future research and guide the interpretation of differences amongst reanalysis fields. The assimilation of total column ozone (TCO) observations in newer reanalyses results in realistic representations of TCO in reanalyses except when data coverage is lacking, such as during polar night. The vertical distribution of ozone is also relatively well represented in the stratosphere in reanalyses, particularly given the relatively weak constraints on ozone vertical structure provided by most assimilated observations and the simplistic representations of ozone photochemical processes in most of the reanalysis forecast models. However, significant biases in the vertical distribution of ozone are found in the upper troposphere and lower stratosphere in all reanalyses. In contrast to O3, reanalysis estimates of stratospheric WV are not directly constrained by assimilated data. Observations of atmospheric humidity are typically used only in the troposphere, below a specified vertical level at or near the tropopause. The fidelity of reanalysis stratospheric WV products is therefore mainly dependent on the reanalyses' representation of the physical drivers that influence stratospheric WV, such as temperatures in the tropical tropopause layer, methane oxidation, and the stratospheric overturning circulation. The lack of assimilated observations and known deficiencies in the representation of stratospheric transport in reanalyses result in much poorer agreement amongst observational and reanalysis estimates of stratospheric WV. Hence, stratospheric WV products from the current generation of reanalyses should generally not be used in scientific studies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-07
    Description: The Indian Ocean is coupled to atmospheric dynamics and chemical composition via several unique mechanisms, such as the seasonally varying monsoon circulation. During the winter monsoon season, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates the atmospheric composition, leading to distinct chemical regimes. The changing atmospheric composition over the Indian Ocean can interact with oceanic biogeochemical cycles and impact marine ecosystems, resulting in potential climate feedbacks. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its local and global impacts. The review considers results from recent Indian Ocean ship campaigns, satellite measurements, station data, and information on continental and oceanic trace gas emissions. The distribution of all major pollutants and greenhouse gases shows pronounced differences between the landmass source regions and the Indian Ocean, with strong gradients over the coastal areas. Surface pollution and ozone are highest during the winter monsoon over the Bay of Bengal and the Arabian Sea coastal waters due to air mass advection from the Indo-Gangetic Plain and continental outflow from Southeast Asia. We observe, however, that unusual types of wind patterns can lead to pronounced deviations of the typical trace gas distributions. For example, the ozone distribution maxima shift to different regions under wind scenarios that differ from the regular seasonal transport patterns. The distribution of greenhouse gases over the Indian Ocean shows many similarities when compared to the pollution fields, but also some differences of the latitudinal and seasonal variations resulting from their long lifetimes and biogenic sources. Mixing ratios of greenhouse gases such as methane show positive trends over the Indian Ocean, but long-term changes in pollution and ozone due to changing emissions and transport patterns require further investigation. Although we know that changing atmospheric composition and perturbations within the Indian Ocean affect each other, the impacts of atmospheric pollution on oceanic biogeochemistry and trace gas cycling are severely understudied. We highlight potential mechanisms, future research topics, and observational requirements that need to be explored in order to fully understand such interactions and feedbacks in the Indian Ocean region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-01-31
    Description: We present consistent annual mean atmospheric histories and growth rates for the mainly anthropogenic halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, which are all potentially useful oceanic transient tracers (tracers of water transport within the ocean), for the Northern and Southern Hemisphere with the aim of providing input histories of these compounds for the equilibrium between the atmosphere and surface ocean. We use observations of these halogenated compounds made by the Advanced Global Atmospheric Gases Experiment (AGAGE), the Scripps Institution of Oceanography (SIO), the Commonwealth Scientific and Industrial Research Organization (CSIRO), the National Oceanic and Atmospheric Administration (NOAA) and the University of East Anglia (UEA). Prior to the direct observational record, we use archived air measurements, firn air measurements and published model calculations to estimate the atmospheric mole fraction histories. The results show that the atmospheric mole fractions for each species, except HCFC-141b and HCFC-142b, have been increasing since they were initially produced. Recently, the atmospheric growth rates have been decreasing for the HCFCs (HCFC-22, HCFC-141b and HCFC-142b), increasing for the HFCs (HFC-134a, HFC-125, HFC-23) and stable with little fluctuation for the PFCs (PFC-14 and PFC-116) investigated here. The atmospheric histories (source functions) and natural background mole fractions show that HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125 and HFC-23 have the potential to be oceanic transient tracers for the next few decades only because of the recently imposed bans on production and consumption. When the atmospheric histories of the compounds are not monotonically changing, the equilibrium atmospheric mole fraction (and ultimately the age associated with that mole fraction) calculated from their concentration in the ocean is not unique, reducing their potential as transient tracers. Moreover, HFCs have potential to be oceanic transient tracers for a longer period in the future than HCFCs as the growth rates of HFCs are increasing and those of HCFCs are decreasing in the background atmosphere. PFC-14 and PFC-116, however, have the potential to be tracers for longer periods into the future due to their extremely long lifetimes, steady atmospheric growth rates and no explicit ban on their emissions. In this work, we also derive solubility functions for HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116 in water and seawater to facilitate their use as oceanic transient tracers. These functions are based on the Clark–Glew–Weiss (CGW) water solubility function fit and salting-out coefficients estimated by the poly-parameter linear free-energy relationships (pp-LFERs). Here we also provide three methods of seawater solubility estimation for more compounds. Even though our intention is for application in oceanic research, the work described in this paper is potentially useful for tracer studies in a wide range of natural waters, including freshwater and saline lakes, and, for the more stable compounds, groundwaters.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: book , doc-type:book
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-18
    Description: Der Ergebnisbericht dokumentiert in Kapitel 2 die in diesem Forschungsvorhaben durchgeführten Arbeiten an dem von der TU Delft entwickelten agentenbasierten Strommarktmodell EMLab-Generation, das als Open-Source Modell konzipiert ist. Einen zentralen Aspekt bildet die Übertragung des Modells, das ursprünglich die beiden Regionen CWE (Central-Western- Europe) und UK umfasste, auf ein Modell mit den beiden Regionen Deutschland und Europa (ohne Deutschland), im Wesentlichen in den Grenzen der EU28. Diese Übertragung ist die Grundlage für die Untersuchung unterschiedlicher Fragestellungen hinsichtlich der zukünftigen Entwicklung des Strommarkts in Deutschland innerhalb des europäischen Verbundnetzes bei hohen Anteilen fluktuierender erneuerbarer Energien an der Stromerzeugung. Nach der Darstellung der konkreten Zielsetzung und der Grundlagen des vorhandenen Modells werden im Hauptteil (Kapitel 2.3) die eigenen Modellierungsarbeiten (Datenaufbereitung, Modellierung und "lessons learned") beschrieben. Im Anschluss erfolgt eine kurze Darstellung einer noch in Erarbeitung befindlichen Masterarbeit zur Berücksichtigung von Risikoaspekten innerhalb des Investitionsalgorithmus' von EMLab-Generation, die sich aus dem internationalen ABM-Workshop als offene methodische Fragestellung von Strommarktmodellen ergeben hat (Kapitel 2.4). Kapitel 2.5 gibt eine kritische Einschätzung der erreichten Modellierungsergebnisse sowie weitere mögliche Anwendungen der neu konzipierten Modellregionen. Kapitel 3 gibt anschließend einen Überblick über die in diesem Vorhaben durchgeführten gemeinsamen Workshops zwischen TU Delft und Wuppertal Institut sowie den internationalen Workshop, an dem fünf Forschungseinrichtungen aus Deutschland sowie die TU Delft erstmals ihre Erfahrungen mit ABM-Strommarktmodellierung austauschten und methodischen Forschungsbedarf aufarbeiteten. Der Bericht schließt mit einer kurzen Zusammenfassung sowie einem Ausblick auf weitere Forschungsarbeiten, mit denen die im Rahmen dieser Anbahnungsmaßnahme begonnene Kooperation zwischen Wuppertal Institut und TU Delft fortgesetzt werden soll.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-18
    Description: Die vorliegende Kurzstudie macht deutlich, dass die großen überregionalen Stromkonzerne und ihre regionalen Töchter den kommunalen Bemühungen zur Stromnetzübernahme mit einem ganzen Bündel an Methoden bzw. Strategien begegnen. Sie haben ein hohes Interesse im Sinne einer Besitzstandswahrung, einmal erworbene Konzessionen auch zukünftig behalten zu können. Gerade jüngere Gesetzesinitiativen und eine Vielzahl von Praxisbeispielen machen deutlich, dass die Konzerne dabei auch vorhandene Lücken im gesetzlichen Regelwerk zu ihren Gunsten nutzen, um Mitbewerber aus dem Feld zu schlagen, und Rekommunalisierungsabsichten der Gemeinden zu erschweren oder zu verhindern. Dazu kommen Maßnahmen, die geeignet sind, politische Entscheidungsträger zu vereinnahmen oder ihre Entscheidungen zu ihren Gunsten zu beeinflussen. In beschriebenen Einzelfällen scheint die Rechtmäßigkeit des Vorgehens sogar zweifelhaft. Aufgrund der unterschiedlichen Erfahrungswerte bietet sich ein Bild einer ungleichen Wettbewerbssituation. Die Strategien überregionaler Energieversorgungsunternehmen zur Besitzstandswahrung auf der Verteilnetzebene entfalten auf diese Weise eine strukturkonservierende Wirkung. Die im Rahmen dieser Kurzstudie gemachten Recherchen können kein vollständiges Bild aller Strategien abbilden. Es wird aber deutlich, dass die Konzessionen ein hart umkämpftes Gut sind und dass hier von den Altkonzessionären eine Vielzahl von Mitteln eingesetzt wird, um Rekommunalisierungen und neue Konzessionäre zu verhindern. Das veranschaulichen die dargestellten Einzelbeispiele. Strategien zur Vermeidung des Konzessionsverlustes sind wissenschaftlich bisher kaum untersucht. Die vorliegende Ausarbeitung sammelt vor diesem Hintergrund Fallbeispiele für die Vergabe an Konzessionen an etablierte Konzessionäre und dokumentierte Formen (Gegenstrategien) für erfolgreiche alternative Konzessionsstrategien. Sie ist ein Baustein in der Forschung des Wuppertal Instituts zum besseren Verständnis politischer Akteursstrategien im Bereich der Energiemärkte. Eine systematische Auswertung kann nur in einer umfangreicheren Studie durchgeführt werden. Deutlich wird, dass es neben einer guten Vorbereitung auf kommunaler Ebene auch zahlreicher Gesetzesinitiativen auf Bundesebene bedarf, um den Konzessionswettbewerb fair ausgestalten zu können. Der vorliegende Bericht beinhaltet daher neben Empfehlungen für Kommunen sowie Erfolgsbeispielen und -faktoren von Netzübernahmen auch Vorschläge für den gesetzgeberischen Handlungsbedarf auf Bundesebene.
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-09
    Description: Most of the short-lived biogenic and anthropogenic chemical species that are emitted into the atmosphere break down efficiently by reaction with OH and do not reach the stratosphere. Here we show the existence of a pronounced minimum in the tropospheric column of ozone over the West Pacific, the main source region for stratospheric air, and suggest a corresponding minimum of the tropospheric column of OH. This has the potential to amplify the impact of surface emissions on the stratospheric composition compared to the impact when assuming globally uniform OH conditions. Specifically, the role of emissions of biogenic halogenated species for the stratospheric halogen budget and the role of increasing emissions of SO2 in Southeast Asia or from minor volcanic eruptions for the increasing stratospheric aerosol loading need to be reassessed in light of these findings. This is also important since climate change will further modify OH abundances and emissions of halogenated species. Our study is based on ozone sonde measurements carried out during the TransBrom cruise with the RV Sonne roughly along 140-150 degrees E in October 2009 and corroborating ozone and OH measurements from satellites, aircraft campaigns and FTIR instruments. Model calculations with the GEOS-Chem Chemistry and Transport Model (CTM) and the ATLAS CTM are used to simulate the tropospheric OH distribution over the West Pacific and the transport pathways to the stratosphere. The potential effect of the OH minimum on species transported into the stratosphere is shown via modeling the transport and chemistry of CH2Br2 and SO2.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: From 10 to 14 September 2003, the Ministerial Conference of the World Trade Organization (WTO) negotiated over a further liberalization of world trade. A lot was at stake there for the environment. It is true that in the current round of negotiations the Doha Declaration has agreed certain points relating to the environment. But this should not conceal the fact that the WTO is still a long way from taking due account of ecological aspects in its policies. The present paper begins by analyzing the discussion on environmental issues within the WTO, which for more than ten years has been conducted mainly in its Committee on Trade and Environment. It is shown that many environmental effects of trade liberalization have not been discussed at all, that conflicts of interest among WTO member-states prevent any deep discussion, and that an ecological reform of the WTO has up to now stood no chance. This analysis then forms the background for a twofold strategy. First, arguments are presented as to why the WTO, given its environmental policy deficits, should afford sufficient scope to institutions actively concerned with environmental policy. The conflictual relationship between Multilateral Environmental Agreements and the WTO is examined at this point. A distinction is drawn between minor and potentially critical conflicts, and it is shown how a limitation of the competence of the WTO's Dispute Settlement Body, together with cooperative political-legal processes to resolve conflicts between affected institutions, might offer a solution and lead to greater institutional equity in the global political arena. Second, the paper discusses how ecological aspects might be integrated step by step into the WTO. After a detailed examination of the potential and limits of instruments like impact assessments, it makes a number of recommendations for their further development. Finally, it considers how impact assessments might be integrated into the WTO's institutional structures, so that ecological aspects can be systematically input into policy-making processes and better public participation in WTO policy be ensured. In this connection, the paper discusses both the integration of impact assessments into the WTO's Trade Policy Review Mechanism and the creation of a new Strategic Impact Assessment Body within the WTO.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-04-12
    Description: Deutschlands Klimaschutzstrategie baut auf den Einsatz von grünem Wasserstoff aus erneuerbaren Energien. Doch wo soll der Wasserstoff herkommen, aus heimischer Produktion oder importiert aus dem Ausland? Eine Studie des Wuppertal Instituts und DIW Econ schafft einen Überblick über die aktuelle Datenlage und ermittelt Wertschöpfungs- und Beschäftigungseffekte beider Strategien. Das Resümee: Es trifft nicht zu, dass importierter Wasserstoff allgemein günstiger ist, entscheidend sind je nach Herkunftsland die tatsächlich realisierbaren Strom- und Transportkosten. Wird der grüne Wasserstoff stattdessen im eigenen Land produziert, wird dies zudem eine positive Beschäftigungswirkung und Wertschöpfung entfalten. Mit der Erreichung der Klimaziele 2050 betrüge die zusätzliche Wertschöpfung bei einer stark auf die heimische Erzeugung ausgerichtete Strategie bis zu 30 Milliarden Euro im Jahr 2050 und es könnten bis zu 800.000 Arbeitsplätze geschaffen werden.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-09-23
    Description: Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2022-02-18
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 17 (18). pp. 11313-11329.
    Publication Date: 2020-02-06
    Description: Very short-lived substances (VSLS) contribute as source gases significantly to the tropospheric and stratospheric bromine loading. At present, an estimated 25% of stratospheric bromine is of oceanic origin. In this study, we investigate how climate change may impact the ocean- atmosphere flux of brominated VSLS, their atmospheric transport, and chemical transformations and evaluate how these changes will affect stratospheric ozone over the 21st century. Under the assumption of fixed ocean water concentrations and RCP6.0 scenario, we find an increase of the ocean- atmosphere flux of brominated VSLS of about 8-10% by the end of the 21st century compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Our model simulations reveal that this increase is counteracted by a corresponding reduction of inorganic bromine. Therefore the total amount of bromine from VSLS in the stratosphere will not be changed by an increase in upwelling. Part of the increase of VSLS in the tropical lower stratosphere results from an increase in the corresponding tropopause height. As the depletion of stratospheric ozone due to bromine depends also on the availability of chlorine, we find the impact of bromine on stratospheric ozone at the end of the 21st century reduced compared to present day. Thus, these studies highlight the different factors influencing the role of brominated VSLS in a future climate
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-18
    Description: We use isoprene and related field measurements from three different ocean data sets together with remotely sensed satellite data to model global marine isoprene emissions. We show that using monthly mean satellite-derived chl a concentrations to parameterize isoprene with a constant chl a normalized isoprene production rate underpredicts the measured oceanic isoprene concentration by a mean factor of 19 ± 12. Improving the model by using phytoplankton functional type dependent production values and by decreasing the bacterial degradation rate of isoprene in the water column results in only a slight underestimation (factor 1.7 ± 1.2). We calculate global isoprene emissions of 0.21 Tg C for 2014 using this improved model, which is twice the value calculated using the original model. Nonetheless, the sea-to-air fluxes have to be at least 1 order of magnitude higher to account for measured atmospheric isoprene mixing ratios. These findings suggest that there is at least one missing oceanic source of isoprene and, possibly, other unknown factors in the ocean or atmosphere influencing the atmospheric values. The discrepancy between calculated fluxes and atmospheric observations must be reconciled in order to fully understand the importance of marine-derived isoprene as a precursor to remote marine boundary layer particle formation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-07
    Description: In this study, we investigate the maximum physical and biogeochemical potential of macroalgae open-ocean mariculture and sinking (MOS) as an ocean-based carbon dioxide removal (CDR) method. Embedding a macroalgae model into an Earth system model, we simulate macroalgae mariculture in the open-ocean surface layer followed by fast sinking of the carbon-rich macroalgal biomass to the deep seafloor (depth〉3000 m), which assumes no remineralization of the harvested biomass during the quick sinking. We also test the combination of MOS with artificial upwelling (AU), which fertilizes the macroalgae by pumping nutrient-rich deeper water to the surface. The simulations are done under RCP 4.5, a moderate-emissions pathway. When deployed globally between years 2020 and 2100, the carbon captured and exported by MOS is 270 PgC, which is further boosted by AU of 447 PgC. Because of feedbacks in the Earth system, the oceanic carbon inventory only increases by 171.8 PgC (283.9 PgC with AU) in the idealized simulations. More than half of this carbon remains in the ocean after cessation at year 2100 until year 3000. The major side effect of MOS on pelagic ecosystems is the reduction of phytoplankton net primary production (PNPP) due to the competition for nutrients with macroalgae and due to canopy shading. MOS shrinks the mid-layer oxygen-minimum zones (OMZs) by reducing the organic matter export to, and remineralization in, subsurface and intermediate waters, while it creates new OMZs on the seafloor by oxygen consumption from remineralization of sunken biomass. MOS also impacts the global carbon cycle by reducing the atmospheric and terrestrial carbon reservoirs when enhancing the ocean carbon reservoir. MOS also enriches dissolved inorganic carbon in the deep ocean. Effects are mostly reversible after cessation of MOS, though recovery is not complete by year 3000. In a sensitivity experiment without remineralization of sunken MOS biomass, the whole of the MOS-captured carbon is permanently stored in the ocean, but the lack of remineralized nutrients causes a long-term nutrient decline in the surface layers and thus reduces PNPP. Our results suggest that MOS has, theoretically, considerable CDR potential as an ocean-based CDR method. However, our simulations also suggest that such large-scale deployment of MOS would have substantial side effects on marine ecosystems and biogeochemistry, up to a reorganization of food webs over large parts of the ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2023-07-07
    Description: Innerhalb des Projekts "Digitalisierung gestalten - Transformation zur Nachhaltigkeit ermöglichen" werden die besonderen Transformationspotenziale der Digitalisierung herausgearbeitet und für Deutschland am Beispiel der ausgewählten Handlungsfelder Mobilität, Circular Economy sowie Landwirtschaft und Ernährung diskutiert. Dieser Bericht adressiert das Handlungsfeld einer klimaschonenden und ressourceneffizienten Kreislaufwirtschaft, die Circular Economy. Bisher wird Kreislaufwirtschaft dabei vor allem mit Fokus auf Recycling und Wiederverwertung von Materialien diskutiert. Das greift jedoch zu kurz - es muss um die Skalierung von neuen, ressourcenschonenden Geschäftsmodellen und der umfassenden Transformation von Wertschöpfungsketten und Industriestrukturen gehen. Die Analyse zeigt: richtig eingesetzt ist Digitalisierung unverzichtbar für diesen Wandel. Der vorliegende Bericht möchte Anstöße für diesen Weg liefern und neue Impulse für eine klima- und ressourcenschonende Industrietransformation in Deutschland setzen. Der Bericht verarbeitet dabei Ergebnisse eines interdisziplinären Workshops zum Thema "Die digital-ökologische Industrietransformation gestalten - Geschäftsmodelle und politische Rahmenbedingungen für Klima- und Ressourcenschutz" mit Expertinnen und Experten aus Forschung, Zivilgesellschaft, Behörden und Privatunternehmen.
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 8 . pp. 1689-1699.
    Publication Date: 2019-07-03
    Description: During the European heat wave summer 2003 with predominant high pressure conditions we performed a detailed study of upper tropospheric humidity and ice particles which yielded striking results concerning the occurrence of ice supersaturated regions (ISSR), cirrus, and contrails. Our study is based on lidar observations and meteorological data obtained at Lindenberg/Germany (52.2° N, 14.1° E) as well as the analysis of the European centre for medium range weather forecast (ECMWF). Cirrus clouds were detected in 55% of the lidar profiles and a large fraction of them were subvisible (optical depth 〈0.03). Thin ice clouds were particularly ubiquitous in high pressure systems. The radiosonde data showed that the upper troposphere was very often supersaturated with respect to ice. Relating the radiosonde profiles to concurrent lidar observations reveals that the ISSRs almost always contained ice particles. Persistent contrails observed with a camera were frequently embedded in these thin or subvisible cirrus clouds. The ECMWF cloud parametrisation reproduces the observed cirrus clouds consistently and a close correlation between the ice water path in the model and the measured optical depth of cirrus is demonstrated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2024-02-07
    Description: Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2024-02-07
    Description: This paper presents a modelling study on the fate of CHBr3 and its product gases in the troposphere within the context of tropical deep convection. A cloud-scale case study was conducted along the west coast of Borneo, where several deep convective systems were triggered on the afternoon and early evening of 19 November 2011. These systems were sampled by the Falcon aircraft during the field campaign of the SHIVA project and analysed using a simulation with the cloud-resolving meteorological model C-CATT-BRAMS at 2x2 km resolution that represents the emissions, transport by large-scale flow, convection, photochemistry, and washout of CHBr3 and its product gases (PGs). We find that simulated CHBr3 mixing ratios and the observed values in the boundary layer and the outflow of the convective systems agree. However, the model underestimates the background CHBr3 mixing ratios in the upper troposphere, which suggests a missing source at the regional scale. An analysis of the simulated chemical speciation of bromine within and around each simulated convective system during the mature convective stage reveals that 〉 85% of the bromine derived from CHBr3 and its PGs is transported vertically to the point of convective detrainment in the form of CHBr3 and that the remaining small fraction is in the form of organic PGs, principally insoluble brominated carbonyls produced from the photo-oxidation of CHBr3. The model simulates that within the boundary layer and free troposphere, the inorganic PGs are only present in soluble forms, i.e. HBr, HOBr, and BrONO2, and, consequently, within the convective clouds, the inorganic PGs are almost entirely removed by wet scavenging. We find that HBr is the most abundant PG in background lower-tropospheric air and that this prevalence of HBr is a result of the relatively low background tropospheric ozone levels at the regional scale. Contrary to a previous study in a different environment, for the conditions in the simulation, the insoluble Br-2 species is hardly formed within the convective systems and therefore plays no significant role in the vertical transport of bromine. This likely results from the relatively small quantities of simulated inorganic bromine involved, the presence of HBr in large excess compared to HOBr and BrO, and the relatively efficient removal of soluble compounds within the convective column.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-04-23
    Description: Coccolithophores are a key functional group in terms of the pelagic production of calcium carbonate (calcite), although their contribution to shelf sea biogeochemistry, and how this relates to environmental conditions, is poorly constrained. Measurements of calcite production (CP) and coccolithophore abundance were made on the north-west European shelf to examine trends in coccolithophore calcification along natural gradients of carbonate chemistry, macronutrient availability and plankton composition. Similar measurements were also made in three bioassay experiments where nutrient (nitrate, phosphate) and pCO2 levels were manipulated. Nanoflagellates (〈 10 μm) dominated chlorophyll biomass and primary production (PP) at all but one sampling site, with CP ranging from 0.6 to 9.6 mmol C m−2 d−1. High CP and coccolithophore abundance occurred in a diatom bloom in fully mixed waters off Heligoland, but not in two distinct coccolithophore blooms in the central North Sea and Western English Channel. Coccolithophore abundance and CP showed no correlation with nutrient concentrations or ratios, while significant (p 〈 0.01) correlations between CP, cell-specific calcification (cell-CF) and irradiance in the water column highlighted how light availability exerts a strong control on pelagic CP. In the experimental bioassays, Emiliania-huxleyi-dominated coccolithophore communities in shelf waters (northern North Sea, Norwegian Trench) showed a strong response in terms of CP to combined nitrate and phosphate addition, mediated by changes in cell-CF and growth rates. In contrast, an offshore diverse coccolithophore community (Bay of Biscay) showed no response to nutrient addition, while light availability or mortality may have been more important in controlling this community. Sharp decreases in pH and a rough halving of calcite saturation states in the bioassay experiments led to decreased CP in the Bay of Biscay and northern North Sea, but not the Norwegian Trench. These decreases in CP were related to slowed growth rates in the bioassays at elevated pCO2 (750 μatm) relative to those in the ambient treatments. The combined results from our study highlight the variable coccolithophore responses to irradiance, nutrients and carbonate chemistry in north-west European shelf waters, which are mediated by changes in growth rates, cell-CF and species composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-01-31
    Description: Particle sinking is a major form of transport for photosynthetically fixed carbon to below the euphotic zone via the biological carbon pump (BCP). Oxygen (O2) depletion may improve the efficiency of the BCP. However, the mechanisms by which O2 deficiency can enhance particulate organic matter (POM) vertical fluxes are not well understood. Here, we investigate the composition and vertical fluxes of POM in two deep basins of the Baltic Sea (GB: Gotland Basin and LD: Landsort Deep). The two basins showed different O2 regimes resulting from the intrusion of oxygen-rich water from the North Sea that ventilated the water column below 140 m in GB, but not in LD, during the time of sampling. In June 2015, we deployed surface-tethered drifting sediment traps in oxic surface waters (GB: 40 and 60 m; LD: 40 and 55 m), within the oxygen minimum zone (OMZ; GB: 110 m and LD: 110 and 180 m) and at recently oxygenated waters by the North Sea inflow in GB (180 m). The primary objective of this study was to test the hypothesis that the different O2 conditions in the water column of GB and LD affected the composition and vertical flux of sinking particles and caused differences in export efficiency between those two basins. The composition and vertical flux of sinking particles were different in GB and LD. In GB, particulate organic carbon (POC) flux was 18 % lower in the shallowest trap (40 m) than in the deepest sediment trap (at 180 m). Particulate nitrogen (PN) and Coomassie stainable particle (CSP) fluxes decreased with depth, while particulate organic phosphorus (POP), biogenic silicate (BSi), chlorophyll a (Chl a) and transparent exopolymeric particle (TEP) fluxes peaked within the core of the OMZ (110 m); this coincided with the presence of manganese oxide-like (MnOx-like) particles aggregated with organic matter. In LD, vertical fluxes of POC, PN and CSPs decreased by 28 %, 42 % and 56 %, respectively, from the surface to deep waters. POP, BSi and TEP fluxes did not decrease continuously with depth, but they were higher at 110 m. Although we observe a higher vertical flux of POP, BSi and TEPs coinciding with abundant MnOx-like particles at 110 m in both basins, the peak in the vertical flux of POM and MnOx-like particles was much higher in GB than in LD. Sinking particles were remarkably enriched in BSi, indicating that diatoms were preferentially included in sinking aggregates and/or there was an inclusion of lithogenic Si (scavenged into sinking particles) in our analysis. During this study, the POC transfer efficiency (POC flux at 180 m over 40 m) was higher in GB (115 %) than in LD (69 %), suggesting that under anoxic conditions a smaller portion of the POC exported below the euphotic zone was transferred to 180 m than under reoxygenated conditions present in GB. In addition, the vertical fluxes of MnOx-like particles were 2 orders of magnitude higher in GB than LD. Our results suggest that POM aggregates with MnOx-like particles formed after the inflow of oxygen-rich water into GB, and the formation of those MnOx–OM-rich particles may alter the composition and vertical flux of POM, potentially contributing to a higher transfer efficiency of POC in GB. This idea is consistent with observations of fresher and less degraded organic matter in deep waters of GB than LD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-03
    Description: A number of field-campaigns in the tropics have been conducted in recent years with two different LIDAR systems at Paramaribo (5.8° N, 55.2° W), Suriname. The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis showed that equatorial Kelvin waves propagated in the TTL and greatly modulated its temperature structure. We found a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. These findings suggest an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2024-02-07
    Description: The past and future evolution of the Antarctic Ice Sheet is largely controlled by interactions between the ocean and floating ice shelves. To investigate these interactions, coupled ocean and ice sheet model configurations are required. Previous modelling studies have mostly relied on high-resolution configurations, limiting these studies to individual glaciers or regions over short timescales of decades to a few centuries. We present a framework to couple the dynamic ice sheet model PISM (Parallel Ice Sheet Model) with the global ocean general circulation model MOM5 (Modular Ocean Model) via the ice shelf cavity model PICO (Potsdam Ice-shelf Cavity mOdel). As ice shelf cavities are not resolved by MOM5 but are parameterized with the PICO box model, the framework allows the ice sheet and ocean components to be run at resolutions of 16 km and 3∘ respectively. This approach makes the coupled configuration a useful tool for the analysis of interactions between the Antarctic Ice Sheet and the global ocean over time spans of the order of centuries to millennia. In this study, we describe the technical implementation of this coupling framework: sub-shelf melting in the ice sheet component is calculated by PICO from modelled ocean temperatures and salinities at the depth of the continental shelf, and, vice versa, the resulting mass and energy fluxes from melting at the ice–ocean interface are transferred to the ocean component. Mass and energy fluxes are shown to be conserved to machine precision across the considered component domains. The implementation is computationally efficient as it introduces only minimal overhead. Furthermore, the coupled model is evaluated in a 4000 year simulation under constant present-day climate forcing and is found to be stable with respect to the ocean and ice sheet spin-up states. The framework deals with heterogeneous spatial grid geometries, varying grid resolutions, and timescales between the ice and ocean component in a generic way; thus, it can be adopted to a wide range of model set-ups.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2024-02-07
    Description: The Baltic Sea has a salinity gradient decreasing from fully marine (〉 25) in the west to below 7 in the central Baltic Proper. Habitat-forming and ecologically dominant mytilid mussels exhibit decreasing growth when salinity 〈 11; however, the mechanisms underlying reduced calcification rates in dilute seawater are not fully understood. Both [HCO−3] and [Ca2+] also decrease with salinity, challenging calcifying organisms through CaCO3 undersaturation (Ω≤1) and unfavourable ratios of calcification substrates ([Ca2+] and [HCO−3]) to the inhibitor (H+), expressed as the extended substrate–inhibitor ratio (ESIR). This study combined in situ monitoring of three southwest Baltic mussel reefs with two laboratory experiments to assess how various environmental conditions and isolated abiotic factors (salinity, [Ca2+], [HCO−3] and pH) impact calcification in mytilid mussels along the Baltic salinity gradient. Laboratory experiments rearing juvenile Baltic Mytilus at a range of salinities (6, 11 and 16), HCO−3 concentrations (300–2100 µmol kg−1) and Ca2+ concentrations (0.5–4 mmol kg−1) reveal that as individual factors, low [HCO−3], pH and salinity cannot explain low calcification rates in the Baltic Sea. Calcification rates are impeded when Ωaragonite ≤ 1 or ESIR ≤ 0.7 primarily due to [Ca2+] limitation which becomes relevant at a salinity of ca. 11 in the Baltic Sea. Field monitoring of carbonate chemistry and calcification rates suggest increased food availability may be able to mask the negative impacts of periodic sub-optimal carbonate chemistry, but not when seawater conditions are permanently adverse, as observed in two Baltic reefs at salinities 〈 11. Regional climate models predict a rapid desalination of the southwest and central Baltic over the next century and potentially a reduction in [Ca2+] which may shift the distribution of marine calcifiers westward. It is therefore vital to understand the mechanisms by which the ionic composition of seawater impacts bivalve calcification for better predicting the future of benthic Baltic ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-07-08
    Description: Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I) and for the first time bromoform (CHBr3) and dibromomethane (CH2Br2), in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000–2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m−2 h−1), very strong source for CH2Br2 (930 pmol m−2 h−1), and an average source for CH3I (460 pmol m−2 h−1). The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime), convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2). The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the Asian summer monsoon is lower than from previous cruises in the tropical west Pacific Ocean during boreal autumn and early winter but higher than from the tropical Atlantic during boreal summer. In contrast, the projected CH2Br2 entrainment was very high because of the high emissions during the west Indian Ocean cruise. The 16-year July time series shows highest interannual variability for the shortest-lived CH3I and lowest for the longest-lived CH2Br2. During this time period, a small increase in VSLS entrainment from the west Indian Ocean through the Asian monsoon to the stratosphere is found. Overall, this study confirms that the subtropical and tropical west Indian Ocean is an important source region of halogenated VSLSs, especially CH2Br2, to the troposphere and stratosphere during the Asian summer monsoon.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-02-07
    Description: Marine particulate organic carbon-13 stable isotope ratios (δ13CPOC) provide insights in understanding carbon cycling through the atmosphere, ocean, and biosphere. They have been used to trace the input of anthropogenic carbon in the marine ecosystem due to the distinct isotopically light signature of anthropogenic emissions. However, δ13CPOC is also significantly altered during photosynthesis by phytoplankton, which complicates its interpretation. For such purposes, robust spatio-temporal coverage of δ13CP OC observations is essential. We collected all such available data sets, merged and homogenized them to provide the largest available marine δ13CPOC data set (Verwega et al., 2021). The data set consists of 4732 data points covering all major ocean basins beginning in the 1960s. We describe the compiled raw data, compare different observational methods, and provide key insights in the temporal and spatial distribution that is consistent with previously observed patterns. The main different sample collection methods (bottle, intake, net, trap) are generally consistent with each other when comparing within regions. An analysis of 1990s mean δ13CP OC values in an meridional section accross the Atlantic Ocean shows relatively high values (≥ −22 ‰) in the low latitudes (〈 30°) trending towards lower values in the Arctic Ocean (∼ −24 ‰) and Southern Ocean (≤ −28 ‰). The temporal trend since the 1960s shows a decrease of mean δ13CPOC by more than 3 ‰ in all basins except for the Southern Ocean which shows a weaker trend but contains relatively poor multi-decadal coverage.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 16 (9). pp. 2033-2047.
    Publication Date: 2022-01-31
    Description: The eastern tropical South Pacific (ETSP) hosts the Peruvian upwelling system, which represents one of the most productive areas in the world ocean. High primary production followed by rapid heterotrophic utilization of organic matter supports the formation of one of the most intense oxygen minimum zones (OMZs) in the world ocean, where dissolved oxygen (O2) concentrations reach less than 1 µmol kg−1. The high productivity leads to an accumulation of dissolved organic matter (DOM) in the surface layers that may serve as a substrate for heterotrophic respiration. However, the importance of DOM utilization for O2 respiration in the Peruvian upwelling system in general and for shaping the upper oxycline in particular remains unclear so far. This study reports the first estimates of diapycnal fluxes and supply of O2, dissolved organic carbon (DOC), dissolved organic nitrogen, dissolved hydrolysable amino acids (DHAA) and dissolved combined carbohydrates (DCCHO) for the ETSP off Peru. Diapycnal flux and supply estimates were obtained by combining measured vertical diffusivities and solute concentration gradients. They were analysed together with the molecular composition of DCCHO and DHAA to infer the transport of labile DOM into the upper OMZ and the potential role of DOM utilization for the attenuation of the diapycnal O2 flux that ventilates the OMZ. The observed diapycnal O2 flux (50 mmol O2 m−2 d−1 at maximum) was limited to the upper 80 m of the water column; the O2 supply of ∼1 µmol kg−1 d−1 was comparable to previously published O2 consumption rates for the North and South Pacific OMZs. The diapycnal DOM flux (31 mmol C m−2 d−1 at maximum) was limited to ∼30 m water depth, suggesting that the labile DOM is extensively consumed within the upper part of the shallow oxycline off Peru. The analyses of DCCHO and DHAA composition support this finding, suggesting that DOM undergoes comprehensive remineralization within the upper part of the oxycline, as the DOM within the core of the OMZ was found to be largely altered. Estimated by a simple equation for carbon combustion, aerobic respiration of DCCHO and DHAA, supplied by diapycnal mixing (0.46 µmol kg−1 d−1 at maximum), could account for up to 38 % of the diapycnal O2 supply in the upper oxycline, which suggests that DOM utilization plays a significant role for shaping the upper oxycline in the ETSP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-07
    Description: Our understanding of the biogeochemical cycling of the climate-relevant trace gas dimethyl sulfide (DMS) in the Peruvian upwelling system is still limited. Here we present oceanic and atmospheric DMS measurements which were made during two shipborne cruises in December 2012 (M91) and October 2015 (SO243) in the Peruvian upwelling region. Dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) were also measured during M91. DMS concentrations were 1.9 ± 0.9 and 2.5 ± 1.9 nmol L−1 in surface waters in October 2015 and December 2012, respectively. Nutrient availability appeared to be the main driver of the observed variability in the surface DMS distributions in the coastal areas. DMS, DMSP, and DMSO showed maxima in the surface layer, and no elevated concentrations associated with the oxygen minimum zone off Peru were measured. The possible role of DMS, DMSP, and DMSO as radical scavengers (stimulated by nitrogen limitation) is supported by their negative correlations with N:P (sum of nitrate and nitrite : dissolved phosphate) ratios. Large variations in atmospheric DMS mole fractions were measured during M91 (144.6 ± 95.0 ppt) and SO243 (91.4 ± 55.8 ppt); however, the atmospheric mole fractions were generally low, and the sea-to-air flux was primarily driven by seawater DMS. The Peruvian upwelling region was identified as a source of atmospheric DMS in December 2012 and October 2015. However, in comparison to the previous measurements in the adjacent regions, the Peru upwelling was a moderate source of DMS emissions at either time (M91: 5.9 ± 5.3 µmol m−2 d−1; SO243: 3.8 ± 2.7 µmol m−2 d−1).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-09-23
    Description: Sea surface and atmospheric measurements of dimethylsulphide (DMS) were performed during the TransBrom cruise in the western Pacific Ocean between Japan and Australia in October 2009. Air–sea DMS fluxes were computed between 0 and 30 μmol m−2 d−1, which are in agreement with those computed by the current climatology, and peak emissions of marine DMS into the atmosphere were found during the occurrence of tropical storm systems. Atmospheric variability in DMS, however, did not follow that of the computed fluxes and was more related to atmospheric transport processes. The computed emissions were used as input fields for the Lagrangian dispersion model FLEXPART, which was set up with actual meteorological fields from ERA-Interim data and different chemical lifetimes of DMS. A comparison with aircraft in situ data from the adjacent HIPPO2 campaign revealed an overall good agreement between modelled versus observed DMS profiles over the tropical western Pacific Ocean. Based on observed DMS emissions and meteorological fields along the cruise track, the model projected that up to 30 g S per month in the form of DMS, emitted from an area of 6 × 104 m2, can be transported above 17 km. This surprisingly large DMS entrainment into the stratosphere is disproportionate to the regional extent of the area of emissions and mainly due to the high convective activity in this region as simulated by the transport model. Thus, if DMS can cross the tropical tropopause layer (TTL), we suggest that the considerably larger area of the tropical western Pacific Ocean can be a source of sulphur to the stratosphere, which has not been considered as yet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2020-02-06
    Description: The climate active trace-gas carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere. A missing source in its atmospheric budget is currently suggested, resulting from an upward revision of the vegetation sink. Tropical oceanic emissions have been proposed to close the resulting gap in the atmospheric budget. We present a bottom-up approach including (i) new observations of OCS in surface waters of the tropical Atlantic, Pacific and Indian oceans and (ii) a further improved global box model to show that direct OCS emissions are unlikely to account for the missing source. The box model suggests an undersaturation of the surface water with respect to OCS integrated over the entire tropical ocean area and, further, global annual direct emissions of OCS well below that suggested by top-down estimates. In addition, we discuss the potential of indirect emission from CS2 and dimethylsulfide (DMS) to account for the gap in the atmospheric budget. This bottom-up estimate of oceanic emissions has implications for using OCS as a proxy for global terrestrial CO2 uptake, which is currently impeded by the inadequate quantification of atmospheric OCS sources and sinks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-03-08
    Description: Circulation anomalies accompanying Sudden Stratospheric Warmings (SSWs) can have a significant impact on the troposphere. This surface response is observed for some but not all SSWs, and their downward coupling is not fully understood. We use an existing classification method to separate downward- and non-propagating SSWs (d/nSSWs) in ERA5 reanalysis data for the years 1979–2019. The differences in SSW downward propagation in composites of spatial patterns clearly show that dSSWs dominate the surface regional impacts following SSWs. During dSSWs, the upper-tropospheric jet stream is significantly displaced equatorward. Wave activity analysis shows remarkable differences between d/nSSWs for planetary and synoptic-scale waves. Enhanced stratospheric planetary eddy kinetic energy (EKE) and heat fluxes around the central date of dSSWs are followed by increased synoptic-scale wave activity and even surface coupling for synoptic-scale EKE. An observed significant reduction in upper-tropospheric synoptic-scale momentum fluxes following dSSWs confirms the important role of tropospheric eddy feedbacks for coupling to the surface. Our findings emphasize the role of the lower stratosphere and synoptic-scale waves in coupling the SSW signal to the surface and agree with mechanisms suggested in earlier modeling studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-09-23
    Description: Methyl iodide (CH3I}, bromoform (CHBr3) and dibromomethane (CH2Br2), which are produced naturally in the oceans, take part in ozone chemistry both in the troposphere and the stratosphere. The significance of oceanic upwelling regions for emissions of these trace gases in the global context is still uncertain although they have been identified as important source regions. To better quantify the role of upwelling areas in current and future climate, this paper analyzes major factors that influenced halocarbon emissions from the tropical North East Atlantic including the Mauritanian upwelling during the DRIVE expedition. Diel and regional variability of oceanic and atmospheric CH3I, CHBr3 and CH2Br2 was determined along with biological and meteorological parameters at six 24 h-stations. Low oceanic concentrations of CH3I from 0.1–5.4 pmol L-1 were equally distributed throughout the investigation area. CHBr3 of 1.0–42.4 pmol L-1 and CH2Br2 of 1.0–9.4 pmol L-1 were measured with maximum concentrations close to the Mauritanian coast. Atmospheric mixing rations of CH3I of up to 3.3, CHBr3 to 8.9 and CH2Br2 to 3.1 ppt above the upwelling and 1.8, 12.8, respectively 2.2 ppt at a Cape Verdean coast were detected during the campaign. While diel variability in CH3I emissions could be mainly ascribed to oceanic non-biological production, no main driver was identified for its emissions in the entire study region. In contrast, oceanic bromocarbons resulted from biogenic sources which were identified as regional drivers of their sea-to-air fluxes. The diel impact of wind speed on bromocarbon emissions increased with decreasing distance to the coast. The height of the marine atmospheric boundary layer (MABL) was determined as an additional factor influencing halocarbon emissions. Oceanic and atmospheric halocarbons correlated well in the study region and in combination with high oceanic CH3I, CHBr3 and CH2Br2 concentrations, local hot spots of atmospheric halocarbons could solely be explained by marine sources. This conclusion is in contrast with previous studies that hypothesized the occurrence of elevated atmospheric halocarbons over the eastern tropical Atlantic mainly originating from the West-African continent.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 9 (11). pp. 4049-4070.
    Publication Date: 2019-02-01
    Description: Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA) forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm) aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2020-10-26
    Description: Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from where it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay). We found that MOx rates always increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol l−1 d−1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 70–95 % of the sediment-released methane was oxidized, whereas only 40–60 % were consumed during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2–220 µmol l−1 revealed a sub-micromolar oxygen-optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidised methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2024-02-07
    Description: The Antarctic ozone hole has led to substantial changes in the Southern Hemisphere atmospheric circulation, such as the strengthening and poleward shift of the midlatitude westerly jet. Ozone recovery during the twenty-first century is expected to continue to affect the jet's strength and position, leading to changes in the opposite direction compared to the twentieth century and competing with the effect of increasing greenhouse gases. Simulations of the Earth's past and future climate, such as those performed for the Coupled Model Intercomparison Project Phase 6 (CMIP6), require an accurate representation of these ozone effects. Climate models that use prescribed ozone fields lack the important feedbacks between ozone chemistry, radiative heating, dynamics, and transport. In addition, when the prescribed ozone field was not generated by the same model to which it is prescribed, the imposed ozone hole is inconsistent with the simulated dynamics. These limitations ultimately affect the climate response to ozone depletion. This study investigates the impact of prescribing the ozone field recommended for CMIP6 on the simulated effects of ozone depletion in the Southern Hemisphere. We employ a new state-of-the-art coupled climate model, Flexible Ocean Climate Infrastructure (FOCI), to compare simulations in which the CMIP6 ozone is prescribed with simulations in which the ozone chemistry is calculated interactively. At the same time, we compare the roles played by ozone depletion and by increasing concentrations of greenhouse gases in driving changes in the Southern Hemisphere atmospheric circulation using a series of historical sensitivity simulations. FOCI captures the known effects of ozone depletion, simulating an austral spring and summer intensification of the midlatitude westerly winds and of the Brewer–Dobson circulation in the Southern Hemisphere. Ozone depletion is the primary driver of these historical circulation changes in FOCI. The austral spring cooling of the polar cap in the lower stratosphere in response to ozone depletion is weaker in the simulations that prescribe the CMIP6 ozone field. We attribute this weaker response to a prescribed ozone hole that is different to the model dynamics and is not collocated with the simulated polar vortex, altering the strength and position of the planetary wavenumber one. As a result, the dynamical contribution to the ozone-induced austral spring lower-stratospheric cooling is suppressed, leading to a weaker cooling trend. Consequently, the intensification of the polar night jet is also weaker in the simulations with prescribed CMIP6 ozone. In contrast, the differences in the tropospheric westerly jet response to ozone depletion fall within the internal variability present in the model. The persistence of the Southern Annular Mode is shorter in the prescribed ozone chemistry simulations. The results obtained with the FOCI model suggest that climate models that prescribe the CMIP6 ozone field still simulate a weaker Southern Hemisphere stratospheric response to ozone depletion compared to models that calculate the ozone chemistry interactively.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-09-23
    Description: Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150–170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 12 (22). pp. 10633-10648.
    Publication Date: 2019-09-23
    Description: Oceanic emissions of halogenated very short-lived substances (VSLS) are expected to contribute significantly to the stratospheric halogen loading and therefore to ozone depletion. The amount of VSLS transported into the stratosphere is estimated based on in-situ observations around the tropical tropopause layer (TTL) and on modeling studies which mostly use prescribed global emission scenarios to reproduce observed atmospheric concentrations. In addition to upper-air VSLS measurements, direct observations of oceanic VSLS emissions are available along ship cruise tracks. Here we use such in-situ observations of VSLS emissions from the West Pacific and tropical Atlantic together with an atmospheric Lagrangian transport model to estimate the direct contribution of bromoform (CHBr3), and dibromomethane (CH2Br2) to the stratospheric bromine loading as well as their ozone depletion potential. Our emission-based estimates of VSLS profiles are compared to upper-air observations and thus link observed oceanic emissions and in situ TTL measurements. This comparison determines how VSLS emissions and transport in the cruise track regions contribute to global upper-air VSLS estimates. The West Pacific emission-based profiles and the global upper-air observations of CHBr3 show a relatively good agreement indicating that emissions from the West Pacific provide an average contribution to the global CHBr3 budget. The tropical Atlantic, although also being a CHBr3 source region, is of less importance for global upper-air CHBr3 estimates as revealed by the small emission-based abundances in the TTL. Western Pacific CH2Br2 emission-based estimates are considerably smaller than upper-air observations as a result of the relatively low sea-to-air flux found in the West Pacific. Together, CHBr3 and CH2Br2 emissions from the West Pacific are projected to contribute to the stratospheric bromine budget with 0.4 pptv Br on average and 2.3 pptv Br for cases of maximum emissions through product and source gas injection. These relatively low estimates reveal that the tropical West Pacific, although characterized by strong convective transport, might overall contribute less VSLS to the stratospheric bromine budget than other regions as a result of only low CH2Br2 and moderate CHBr3 oceanic emissions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-02-18
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-03-05
    Description: The El Niño Southern Oscillation (ENSO) with its warm (El Niño) and cold (La Niña) phase has strong impacts on marine ecosystems off Peru. This influence extends from changes in nutrient availability to productivity and oxygen levels. While several studies have demonstrated the influence of ENSO events on biological productivity, less is known about their impact on oxygen concentrations. In situ observations along the Peruvian and Chilean coast have shown a strong water column oxygenation during the 1997/1998 strong El Niño event. These observations suggest a deepening of the oxygen minimum zone (OMZ) along the continental shelf. However, due to reduced spatial coverage of the existing in situ observations, no studies have yet demonstrated the OMZ response to El Niño events in the whole Eastern Tropical South Pacific (ETSP). Furthermore, most studies have focused on El Niño events. Much less attention was given to the oxygen dynamics under La Niña influence. Here, we provide a comprehensive analysis of the ENSO influence on OMZ dynamics. Interannual variability of the OMZ during the period 1990–2010 is derived from a regional coupled physical-biogeochemical model forced with realistic atmospheric and lateral boundary conditions. Our results show a reduction of the vertical extent and a deepening of suboxic waters (SW) during the El Niño phase. During the La Niña phase, there is a vertical expansion of SW. These fluctuations in OMZ extent are due to changes in oxygen supply into its core depth mainly from lateral margins. During the El Niño phase, the enhanced lateral oxygen supply from the subtropics is the main reason for the reduction of SW in both coastal and offshore regions. During the La Niña phase, the oxygenated subtropical waters are blocked by the poleward transport along the southern margin of the OMZ. Consequently, oxygen concentrations within the OMZ are reduced and suboxic conditions expand during La Niña. The detailed analysis of transport pathways presented here provides new insights into how ENSO variability affects the oxygen-sensitive marine biogeochemistry of the ETSP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-09-06
    Description: In late May 2005 unusual high levels of solar ultraviolet radiation were observed over central Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with high solar elevation angles and high pressure induced clear sky conditions leading to the highest value of erythemal UV-radiation ever observed over this location in May since 1994. This hereafter called "ozone mini-hole" was caused by an elevation of tropopause height accompanied with a poleward advection of ozone-poor air from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen in late spring can considerably enhance the solar UV-radiation in mid latitudes and therefore contribute to the UV-burden of people living in these regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-09-06
    Description: In late May 2005 unusual high levels of solar ultraviolet radiation were observed over central Europe. In Northern Germany the measured irradiance of erythemally effective radiation exceeded the climatological mean by more than about 20%. An extreme low ozone event for the season coincided with high solar elevation angles and high pressure induced clear sky conditions leading to the highest value of erythemal UV-radiation ever observed over this location in May since 1994. This hereafter called "ozone mini-hole" was caused by an elevation of tropopause height accompanied with a poleward advection of ozone-poor air from the tropics. The resultant increase in UV-radiation is of particular significance for human health. Dynamically induced low ozone episodes that happen in late spring can considerably enhance the solar UV-radiation in mid latitudes and therefore contribute to the UV-burden of people living in these regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-02-18
    Description: Das übergeordnete Ziel des Forschungs-Projektes RESTORE 2050 (Regenerative Stromversorgung & Speicherbedarf in 2050; Förderkennzeichen 03SF0439) war es, wissenschaftlich belastbare Handlungsempfehlungen für die Transformation des deutschen Stromsystems im europäischen Kontext zu geben. Dafür wurden auf Basis der zukünftig prognostizierten Entwicklung von Stromangebot und -nachfrage innerhalb des ENTSO-E Netzverbundes für den Zeithorizont des Jahres 2050 sowie mittels örtlich und zeitlich hoch aufgelöster meteorologischer Zeitreihen die Themenkomplexe (1) Nationale Ausbaustrategien für erneuerbare Energien, (2) Übertragungsnetzausbau und (3) Alternativmaßnahmen wie Lastmanagement, (4) Bedeutung des EE-Stromaustauschs mit Drittstaaten und (5) die Rolle von Stromspeichern auf Übertragungsnetzebene analysiert. Die aus den Untersuchungsergebnissen abgeleitenden Handlungsempfehlungen stellen wichtige Beiträge für die weitere Integration von erneuerbaren Energien dar und geben Hinweise für den Aufbau einer leistungsfähigen europäischen Infrastruktur.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2024-02-07
    Description: The science guiding the EUREC4A campaign and its measurements is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EUREC4A marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EUREC4A explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EUREC4A's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: video
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-09-23
    Description: Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38%) to 0.78 (115%) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24%) to 1.25 (167%) ppt. We also use aircraft observations made during the 2011 "Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign, in the tropical West Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (BryVSLS). Our simulations show BryVSLS ranges from ~ 4.0 to 8.0 ppt depending on the inventory. We report an optimised estimate at the lower end of this range (~ 4 ppt) based on combining the CHBr3 and CH2Br2 inventories which give best agreement with the compilation of observations in the tropics.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2022-01-31
    Description: Chloromethane (CH3Cl) is the most important natural input of reactive chlorine to the stratosphere, contributing about 16 % to stratospheric ozone depletion. Due to the phase-out of anthropogenic emissions of chlorofluorocarbons, CH3Cl will largely control future levels of stratospheric chlorine. The tropical rainforest is commonly assumed to be the strongest single CH3Cl source, contributing over half of the global annual emissions of about 4000 to 5000 Gg (1 Gg = 109 g). This source shows a characteristic carbon isotope fingerprint, making isotopic investigations a promising tool for improving its atmospheric budget. Applying carbon isotopes to better constrain the atmospheric budget of CH3Cl requires sound information on the kinetic isotope effects for the main sink processes: the reaction with OH and Cl in the troposphere. We conducted photochemical CH3Cl degradation experiments in a 3500 dm3 smog chamber to determine the carbon isotope effect (ε=k13C/k12C−1 ) for the reaction of CH3Cl with OH and Cl. For the reaction of CH3Cl with OH, we determined an ε value of (−11.2±0.8) ‰ (n=3) and for the reaction with Cl we found an ε value of (−10.2±0.5 ) ‰ (n=1), which is 5 to 6 times smaller than previously reported. Our smaller isotope effects are strongly supported by the lack of any significant seasonal covariation in previously reported tropospheric δ13C(CH3Cl) values with the OH-driven seasonal cycle in tropospheric mixing ratios. Applying these new values for the carbon isotope effect to the global CH3Cl budget using a simple two hemispheric box model, we derive a tropical rainforest CH3Cl source of (670±200) Gg a−1, which is considerably smaller than previous estimates. A revision of previous bottom-up estimates, using above-ground biomass instead of rainforest area, strongly supports this lower estimate. Finally, our results suggest a large unknown CH3Cl source of (1530±200) Gg a−1.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2022-11-10
    Description: Eine erfolgreiche Energiewende setzt nicht nur Innovationen voraus, sondern erfordert auch eine aktive Exnovation der fossilen Energieerzeugung. Die vorliegende Masterarbeit zielt deshalb darauf ab, Herausforderungen und Ansatzpunkte für eine Verständigung zwischen Gewerkschaften und Umweltverbänden zur der Zukunft Kohleenergie zu untersuchen. Leitend sind zwei Fragen: Erstens und empirisch: Welche Argumente vertreten Umweltverbände und Gewerkschaften hinsichtlich eines Kohleausstiegs? Zweitens und verbunden mit der gewählten theoretischen Perspektive der Sozialen Ökologie: Welche Bezogenheiten und Trennungen werden zwischen den jeweiligen Verständnissen von Natur, Gesellschaft und Ökonomie in den Argumenten der Akteure sichtbar? Dafür wurde im theoretischen Teil der Arbeit eine sozial-ökologische Perspektive auf die energetische Kohlenutzung und das sogenannte Jobs versus Environment Dilemma erarbeitet. Im empirischen Teil werden mittels einer qualitativen Inhaltsanalyse über 100 Veröffentlichungen verschiedener Gewerkschaften und Umweltverbände aus dem Zeitraum von Ende 2014 (erster politischer Vorstoß zur Reduzierung der Kohleverstromung) bis Anfang 2019 (Ende der Kommission "Wachstum, Strukturwandel und Beschäftigung") ausgewertet. Als Ergebnis legt die Arbeit die Argumente der Akteure vergleichend dar, zeigt auf, wie sich diese im Verlauf des Untersuchungszeitraums verändern und welche Gemeinsamkeiten und Unterschiede, Annäherungen und Distanzierungen zwischen den einzelnen Akteuren und Akteursgruppen bestehen. Darauf aufbauend wird der Umgang der Akteure mit dem Jobs versus Environment Dilemma aus der Perspektive der Sozialen Ökologie diskutiert und verglichen. Die Erkenntnisse der Forschungsarbeit legen nahe, dass der gewerkschaftliche Ansatz von Just Transition bzw. "gerechtem" Strukturwandel mit Klima- und Umweltgerechtigkeitskonzepten verknüpft werden muss, um einen umfassenden inter- und intragenerationellen Gerechtigkeitsanspruch zu erfüllen. Damit der Kohleausstieg und weitere Exnovationsprozesse als sozial-ökologische Transformation gestaltet werden können, ist es notwendig, sowohl die aktuelle ökonomische Abhängigkeit von Arbeitenden in betroffenen Branchen zu verstehen als auch den Klimawandel nicht nur als ökologische, sondern auch als soziale und ökonomische Frage anzuerkennen.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: masterthesis , doc-type:masterThesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-01-31
    Description: Depth profiles of nitrous oxide (N2O) were measured during six cruises to the upwelling area and oxygen minimum zone (OMZ) off Peru in 2009 and 2012/2013, covering both the coastal shelf region and the adjacent open ocean. N2O profiles displayed a strong sensitivity towards oxygen concentrations. Open ocean profiles with distances to the shelf break larger than the first baroclinic Rossby radius of deformation showed a transition from a broad maximum close to the Equator to a double-peak structure south of 5° S where the oxygen minimum was more pronounced. Maximum N2O concentrations in the open ocean were about 80 nM. A linear relationship between ΔN2O and apparent oxygen utilization (AOU) could be found for measurements within the upper oxycline, with a slope similar to studies in other oceanic regions. In contrast, N2O profiles close to the shelf revealed a much higher variability, and N2O concentrations higher than 100 nM were often observed. The highest N2O concentration measured at the shelf was  ∼  850 nM. Due to the extremely sharp oxygen gradients at the shelf, N2O maxima occurred in very shallow water depths of less than 50 m. In the coastal area, a linear relationship between ΔN2O and AOU could not be observed as extremely high ΔN2O values were scattered over the full range of oxygen concentrations. The data points that showed the strongest deviation from a linear ΔN2O ∕ AOU relationship also showed signals of intense nitrogen loss. These results indicate that the coastal upwelling at the Peruvian coast and the subsequent strong remineralization in the water column causes conditions that lead to extreme N2O accumulation, most likely due to the interplay of intense mixing and high rates of remineralization which lead to a rapid switching of the OMZ waters between anoxic and oxic conditions. This, in turn, could trigger incomplete denitrification or pulses of increased nitrification with extreme N2O production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2024-02-07
    Description: The consideration of marine biogeochemistry is essential for simulating the carbon cycle in an Earth system model. Here we present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, air-sea gas exchange of CO2 and O2, and simulations with prescribed atmospheric CO2 or CO2 emissions. A series of experiments covering the historical period (1850–2014) were performed following the DECK (Diagnostic, Evaluation and Characterization of Klima) and CMIP6 (Coupled Model Intercomparison Project 6) protocols. Overall, modelled biogeochemical tracer distributions and fluxes, as well as transient evolution in surface air temperature, air-sea CO2 fluxes, and changes of ocean carbon and heat, are in good agreement with observations. Modelled inorganic and organic tracer distributions are quantitatively evaluated by statistically-derived metrics. Results of the FOCI-MOPS model, also including sea surface temperature, surface pH, oxygen (100–600 m), nitrate (0–100 m), and primary production, are within the range of other CMIP6 model results. Overall, the evaluation of FOCI-MOPS indicates its suitability for Earth climate system simulations
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-10-02
    Description: Förderbanken vergeben in Deutschland jährlich mindestens 200 Milliarden Euro an Mitteln für Investitionen, die sonst nicht oder sehr viel später umgesetzt werden könnten. Sie arbeiten im öffentlichen Auftrag und richten ihre Tätigkeit an gesellschaftlichen Zielen aus. Diese Ziele haben sich weiterentwickelt. Angesichts von Klimawandel, Energiekrise und den Herausforderungen einer Kreislaufwirtschaft wollen sowohl die Länder als auch die Bundesregierung ihre Förderbanken umbauen. Gerade die Förderbanken der Länder müssen sich darum jetzt bereit machen für die "Weiterentwicklung von Förderbanken zu Transformationsbanken". Für die erfolgreiche Gestaltung dieses gesellschaftlichen Umbruchs brauchen sie Unterstützung. Wie dies gelingt, zeigt dieser Zukunftsimpuls.
    Keywords: ddc:330
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2022-01-31
    Description: The coastal upwelling regime off Peru in December 2012 showed considerable vertical concentration gradients of dissolved nitrous oxide (N2O) across the top few meters of the ocean. The gradients were predominantly downward, i.e., concentrations decreased toward the surface. Ignoring these gradients causes a systematic error in regionally integrated gas exchange estimates, when using observed concentrations at several meters below the surface as input for bulk flux parameterizations – as is routinely practiced. Here we propose that multi-day near-surface stratification events are responsible for the observed near-surface N2O gradients, and that the gradients induce the strongest bias in gas exchange estimates at winds of about 3 to 6 m s−1. Glider hydrographic time series reveal that events of multi-day near-surface stratification are a common feature in the study region. In the same way as shorter events of near-surface stratification (e.g., the diurnal warm layer cycle), they preferentially exist under calm to moderate wind conditions, suppress turbulent mixing, and thus lead to isolation of the top layer from the waters below (surface trapping). Our observational data in combination with a simple gas-transfer model of the surface trapping mechanism show that multi-day near-surface stratification can produce near-surface N2O gradients comparable to observations. They further indicate that N2O gradients created by diurnal or shorter stratification cycles are weaker and do not substantially impact bulk emission estimates. Quantitatively, we estimate that the integrated bias for the entire Peruvian upwelling region in December 2012 represents an overestimation of the total N2O emission by about a third, if concentrations at 5 or 10 m depth are used as surrogate for bulk water N2O concentration. Locally, gradients exist which would lead to emission rates overestimated by a factor of two or more. As the Peruvian upwelling region is an N2O source of global importance, and other strong N2O source regions could tend to develop multi-day near-surface stratification as well, the bias resulting from multi-day near-surface stratification may also impact global oceanic N2O emission estimates.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-09-23
    Description: Due to the unprecedented rate at which our climate is changing, the ultimate consequence for many species is likely to be either extinction or migration to an alternate habitat. Certain species might, however, evolve at a rate that could make them resilient to the effects of a rapidly changing environment. This scenario is most likely to apply to species that have large population sizes and rapid generation times, such that the genetic variation required for adaptive evolution can be readily supplied. Emiliania huxleyi (Lohm.) Hay and Mohler (Prymnesiophyceae) is likely to be such a species, as it is the most conspicuous extant calcareous phytoplankton species in our oceans with growth rates of 1 day−1. Here we report on a validated set of microsatellites, in conjunction with the coccolithophore morphology motif genetic marker, to genotype 93 clonal isolates collected from across the world. Of these, 52 came from a single bloom event in the North Sea collected on the D366 United Kingdom Ocean Acidification cruise in June–July 2011. There were 26 multilocus genotypes (MLGs) encountered only once in the North Sea bloom and 8 MLGs encountered twice or up to six times. Each of these repeated MLGs exhibited Psex values of less than 0.05, indicating each repeated MLG was the product of asexual reproduction and not separate meiotic events. In addition, we show that the two most polymorphic microsatellite loci, EHMS37 and P01E05, are reporting on regions likely undergoing rapid genetic drift during asexual reproduction. Despite the small sample size, there were many more repeated genotypes than previously reported for other bloom-forming phytoplankton species, including a previously genotyped E. huxleyi bloom event. This study challenges the current assumption that sexual reproduction predominates during bloom events. Whilst genetic diversity is high amongst extant populations of E. huxleyi, the root cause for this diversity and ultimate fate of these populations still requires further examination. Nonetheless, we show that certain CMM genotypes are found everywhere, while others appear to have a regional bias.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Earth System Science Data, 11 (1). pp. 375-391.
    Publication Date: 2022-01-31
    Description: The ice–substrate interface is an important boundary condition for ice sheet modelling. The substrate affects the ice sheet by allowing sliding through sediment deformation and accommodating the storage and drainage of subglacial water. We present three datasets on a 1 : 5 000 000 scale with different geological parameters for the region that was covered by the ice sheets in North America, including Greenland and Iceland. The first dataset includes the distribution of surficial sediments, which is separated into continuous, discontinuous and predominantly rock categories. The second dataset includes sediment grain size properties, which is divided into three classes: clay, silt and sand, based on the dominant grain size of the fine fraction of the glacial sediments. The third dataset is the generalized bedrock geology. We demonstrate the utility of these datasets for governing ice sheet dynamics by using an ice sheet model with a simulation that extends through the last glacial cycle. In order to demonstrate the importance of the basal boundary conditions for ice sheet modelling, we changed the shear friction angle to account for a weaker substrate and found changes up to 40 % in ice thickness compared to a reference run. Although incorporation of the ice–bed boundary remains model dependent, our dataset provides an observational baseline for improving a critical weakness in current ice sheet modelling (https://doi.org/10.1594/PANGAEA.895889, Gowan et al., 2018b).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-08-02
    Description: Simulations of the glacial–interglacial history of the Antarctic Ice Sheet provide insights into dynamic threshold behavior and estimates of the ice sheet's contributions to global sea-level changes for the past, present and future. However, boundary conditions are weakly constrained, in particular at the interface of the ice sheet and the bedrock. Also climatic forcing covering the last glacial cycles is uncertain, as it is based on sparse proxy data. We use the Parallel Ice Sheet Model (PISM) to investigate the dynamic effects of different choices of input data, e.g., for modern basal heat flux or reconstructions of past changes of sea level and surface temperature. As computational resources are limited, glacial-cycle simulations are performed using a comparably coarse model grid of 16 km and various parameterizations, e.g., for basal sliding, iceberg calving, or for past variations in precipitation and ocean temperatures. In this study we evaluate the model's transient sensitivity to corresponding parameter choices and to different boundary conditions over the last two glacial cycles and provide estimates of involved uncertainties. We also discuss isolated and combined effects of climate and sea-level forcing. Hence, this study serves as a “cookbook” for the growing community of PISM users and paleo-ice sheet modelers in general. For each of the different model uncertainties with regard to climatic forcing, ice and Earth dynamics, and basal processes, we select one representative model parameter that captures relevant uncertainties and motivates corresponding parameter ranges that bound the observed ice volume at present. The four selected parameters are systematically varied in a parameter ensemble analysis, which is described in a companion paper.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-08-02
    Description: The Parallel Ice Sheet Model (PISM) is applied to the Antarctic Ice Sheet over the last two glacial cycles (≈210 000 years) with a resolution of 16 km. An ensemble of 256 model runs is analyzed in which four relevant model parameters have been systematically varied using full-factorial parameter sampling. Parameters and plausible parameter ranges have been identified in a companion paper (Albrecht et al., 2020) and are associated with ice dynamics, climatic forcing, basal sliding and bed deformation and represent distinct classes of model uncertainties. The model is scored against both modern and geologic data, including reconstructed grounding-line locations, elevation–age data, ice thickness, surface velocities and uplift rates. An aggregated score is computed for each ensemble member that measures the overall model–data misfit, including measurement uncertainty in terms of a Gaussian error model (Briggs and Tarasov, 2013). The statistical method used to analyze the ensemble simulation results follows closely the simple averaging method described in Pollard et al. (2016). This analysis reveals clusters of best-fit parameter combinations, and hence a likely range of relevant model and boundary parameters, rather than individual best-fit parameters. The ensemble of reconstructed histories of Antarctic Ice Sheet volumes provides a score-weighted likely range of sea-level contributions since the Last Glacial Maximum (LGM) of 9.4±4.1 m (or 6.5±2.0×106km3 ), which is at the upper range of most previous studies. The last deglaciation occurs in all ensemble simulations after around 12 000 years before present and hence after the meltwater pulse 1A (MWP1a). Our ensemble analysis also provides an estimate of parametric uncertainty bounds for the present-day state that can be used for PISM projections of future sea-level contributions from the Antarctic Ice Sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-04-21
    Description: Volatile halogenated organic compounds containing bromine and iodine, which are naturally produced in the ocean, are involved in ozone depletion in both the troposphere and stratosphere. Three prominent compounds transporting large amounts of marine halogens into the atmosphere are bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I). The input of marine halogens to the stratosphere is based on observations and modeling studies using low resolution oceanic emission scenarios derived from top down approaches. In order to improve emission inventory estimates, we calculate data-based high resolution global sea-to-air flux estimates of these compounds from surface observations within the HalOcAt database (https://halocat.geomar.de/). Global maps of marine and atmospheric surface concentrations are derived from the data which are divided into coastal, shelf and open ocean regions. Considering physical and biogeochemical characteristics of ocean and atmosphere, the open ocean water and atmosphere data are classified into 21 regions. The available data are interpolated onto a 1° × 1° grid while missing grid values are interpolated with latitudinal and longitudinal dependent regression techniques reflecting the compounds' distributions. With the generated surface concentration climatologies for the ocean and atmosphere, global concentration gradients and sea-to-air fluxes are calculated. Based on these calculations we estimate a total global flux of 1.5/2.5 Gmol Br yr−1 for CHBr3, 0.78/0.98 Gmol Br yr−1 for CH2Br2 and 1.24/1.45 Gmol I yr−1 for CH3I (Robust Fit/Ordinary Least Square regression technique). Contrary to recent studies, negative fluxes occur in each sea-to-air flux climatology, mainly in the Arctic and Antarctic region. "Hot spots" for global polybromomethane emissions are located in the equatorial region, whereas methyl iodide emissions are enhanced in the subtropical gyre regions. Inter-annual and seasonal variation is contained within our calculations for all three compounds. Compared to earlier studies, our global fluxes are at the lower end of estimates, especially for bromoform. An underrepresentation of coastal emissions and of extreme events in our estimate might explain the mismatch between our bottom up emission estimate and top down approaches
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: Vom 10. bis zum 14. September diesen Jahres verhandelt die Ministerkonferenz der Welthandelsorganisation (WTO) über eine weitere Liberalisierung des Welthandels. Dabei steht für die Umwelt eine Menge auf dem Spiel. Zwar wurden mit der Doha Deklaration in der gegenwärtigen Verhandlungsrunde einige Verhandlungen mit Umweltbezug vereinbart. Dies täuscht aber darüber hinweg, dass die WTO noch weit entfernt davon ist, ökologische Aspekte in ihrer Politik angemessen zu berücksichtigen. Vorliegendes Papier analysiert zunächst die Diskussion über Umweltthemen in der WTO, welche seit über zehn Jahren vor allem im Committee on Trade and Environment (CTE) der WTO geführt wird. Die Analyse zeigt auf, dass zahlreiche Umwelteffekte von Handelsliberalisierungen gar nicht diskutiert wurden, Interessengegensätze zwischen Mitgliedsstaaten der WTO eine tief gehende Diskussion vereiteln und Ansätze einer ökologischen Reform der WTO bislang keine Chance hatten. Vor dem Hintergrund dieser Analyse wird sodann eine doppelte Strategie entwickelt. Erstens wird dargelegt, warum die WTO aufgrund ihrer umweltpolitischen Defizite denjenigen Institutionen ihren Handlungsspielraum lassen sollte, die sich aktiv mit Umweltpolitik beschäftigen. Hierzu wird das Konfliktverhältnis multilateraler Umweltabkommen und der WTO untersucht. Zunächst erfolgt eine Klassifizierung in unbedenkliche und potentiell kritische Konfliktfälle. Dann wird aufgezeigt, wie einerseits eine Begrenzung der Zuständigkeiten des Streitschlichtungsorgans der WTO sowie andererseits kooperative, politisch-rechtliche Prozesse zur Lösung der Konflikte zwischen den betroffenen Institutionen eine Lösung bieten und zu einer größeren institutionellen Gleichheit in der globalen politischen Arena führen könnten. Zweitens wird erörtert, wie ökologische Aspekte Schritt für Schritt in die WTO integriert werden könnten. Hierzu werden Instrumente der strategischen Folgenabschätzung untersucht. Nach einer eingehenden Analyse der Potenziale und Grenzen von strategischen Folgenabschätzungen werden Empfehlungen zu ihrer Weiterentwicklung formuliert. Anschließend werden Möglichkeiten dargestellt, wie strategische Folgenabschätzung in die institutionellen Strukturen der WTO integriert werden könnten, um ökologische Aspekte systematisch in die politischen Entscheidungsprozesse einfließen zu lassen und eine verbesserte Partizipation der Öffentlichkeit an der Politik der WTO zu gewährleisten. Dabei wird einerseits eine Integration strategischer Folgenabschätzungen in den Trade Policy Review Mechanism der WTO und andererseits die Einrichtung eines neuen Strategic Impact Assessment Body innerhalb der WTO diskutiert.
    Keywords: ddc:320
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: workingpaper , doc-type:workingPaper
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2024-01-11
    Description: Ocean alkalinity enhancement (OAE) is a marine carbon dioxide removal (CDR) approach. Publicly funded research projects have begun, and philanthropic funding and start-ups are collectively pushing the field forward. This rapid progress in research activities has created an urgent need to learn if and how OAE can work at scale. The Best Practices Guide to OAE research contains 7 topics broken down into 13 chapters that compare and synthesise previously published methods and offer guidance for future research.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 . pp. 6369-6387.
    Publication Date: 2019-07-10
    Description: Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol L−1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L−1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L−1. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol m−3 h−1 for CHBr3, 10 ± 12 pmol m−3 h−1 for CH2Br2, 21 ± 24 pmol m−3 h−1 for CH3I and 384 ± 318 pmol m−3 h−1 for CH2I2 determined from 13 depth profiles.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2024-02-07
    Description: We present a transient simulation of global vegetation and climate patterns of the mid- and late Holocene using the MPI-ESM (Max Planck Institute for Meteorology Earth System Model) at T63 resolution. The simulated vegetation trend is discussed in the context of the simulated Holocene climate change. Our model captures the main trends found in reconstructions. Most prominent are the southward retreat of the northern treeline that is combined with the strong decrease of forest in the high northern latitudes during the Holocene and the vast increase of the Saharan desert, embedded in a general decrease in precipitation and vegetation in the Northern Hemisphere monsoon margin regions. The Southern Hemisphere experiences weaker changes in total vegetation cover during the last 8000 years. However, the monsoon-related increase in precipitation and the insolation-induced cooling of the winter climate lead to shifts in the vegetation composition, mainly between the woody plant functional types (PFTs). The large-scale global patterns of vegetation almost linearly follow the subtle, approximately linear, orbital forcing. In some regions, however, non-linear, more rapid changes in vegetation are found in the simulation. The most striking region is the Sahel–Sahara domain with rapid vegetation transitions to a rather desertic state, despite a gradual insolation forcing. Rapid shifts in the simulated vegetation also occur in the high northern latitudes, in South Asia and in the monsoon margins of the Southern Hemisphere. These rapid changes are mainly triggered by changes in the winter temperatures, which go into, or move out of, the bioclimatic tolerance range of individual PFTs. The dynamics of the transitions are determined by dynamics of the net primary production (NPP) and the competition between PFTs. These changes mainly occur on timescales of centuries. More rapid changes in PFTs that occur within a few decades are mainly associated with the timescales of mortality and the bioclimatic thresholds implicit in the dynamic vegetation model, which have to be interpreted with caution. Most of the simulated Holocene vegetation changes outside the high northern latitudes are associated with modifications in the intensity of the global summer monsoon dynamics that also affect the circulation in the extra tropics via teleconnections. Based on our simulations, we thus identify the global monsoons as the key player in Holocene climate and vegetation change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2020-02-06
    Description: It is well established that variable wintertime planetary wave forcing in the stratosphere controls the variability of Arctic stratospheric ozone through changes in the strength of the polar vortex and the residual circulation. While previous studies focused on the variations in upward wave flux entering the lower stratosphere, here the impact of downward planetary wave reflection on ozone is investigated for the first time. Utilizing the MERRA2 reanalysis and a fully coupled chemistry–climate simulation with the Community Earth System Model (CESM1(WACCM)) of the National Center for Atmospheric Research (NCAR), we find two downward wave reflection effects on ozone: (1) the direct effect in which the residual circulation is weakened during winter, reducing the typical increase of ozone due to upward planetary wave events and (2) the indirect effect in which the modification of polar temperature during winter affects the amount of ozone destruction in spring. Winter seasons dominated by downward wave reflection events (i.e., reflective winters) are characterized by lower Arctic ozone concentration, while seasons dominated by increased upward wave events (i.e., absorptive winters) are characterized by relatively higher ozone concentration. This behavior is consistent with the cumulative effects of downward and upward planetary wave events on polar stratospheric ozone via the residual circulation and the polar temperature in winter. The results establish a new perspective on dynamical processes controlling stratospheric ozone variability in the Arctic by highlighting the key role of wave reflection.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2022-04-06
    Description: It is an open question how localized elevated emissions of bromoform (CHBr3) and other very short-lived halocarbons (VSLHs), found in coastal and upwelling regions, and low background emissions, typically found over the open ocean, impact the atmospheric VSLH distribution. In this study, we use the Lagrangian dispersion model FLEXPART to simulate atmospheric CHBr3 resulting from assumed uniform background emissions, and from elevated emissions consistent with those derived during three tropical cruise campaigns. The simulations demonstrate that the atmospheric CHBr3 distributions in the uniform background emissions scenario are highly variable with high mixing ratios appearing in regions of convergence or low wind speed. This relation holds on regional and global scales. The impact of localized elevated emissions on the atmospheric CHBr3 distribution varies significantly from campaign to campaign. The estimated impact depends on the strength of the emissions and the meteorological conditions. In the open waters of the western Pacific and Indian oceans, localized elevated emissions only slightly increase the background concentrations of atmospheric CHBr3, even when 1∘ wide source regions along the cruise tracks are assumed. Near the coast, elevated emissions, including hot spots up to 100 times larger than the uniform background emissions, can be strong enough to be distinguished from the atmospheric background. However, it is not necessarily the highest hot spot emission that produces the largest enhancement, since the tug-of-war between fast advective transport and local accumulation at the time of emission is also important. Our results demonstrate that transport variations in the atmosphere itself are sufficient to produce highly variable VSLH distributions, and elevated VSLHs in the atmosphere do not always reflect a strong localized source. Localized elevated emissions can be obliterated by the highly variable atmospheric background, even if they are orders of magnitude larger than the average open ocean emissions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2024-02-07
    Description: State-of-the-art Earth system models typically employ grid spacings of O(100 km), which is too coarse to explicitly resolve main drivers of the flow of energy and matter across the Earth system. In this paper, we present the new ICON-Sapphire model configuration, which targets a representation of the components of the Earth system and their interactions with a grid spacing of 10 km and finer. Through the use of selected simulation examples, we demonstrate that ICON-Sapphire can (i) be run coupled globally on seasonal timescales with a grid spacing of 5 km, on monthly timescales with a grid spacing of 2.5 km, and on daily timescales with a grid spacing of 1.25 km; (ii) resolve large eddies in the atmosphere using hectometer grid spacings on limited-area domains in atmosphere-only simulations; (iii) resolve submesoscale ocean eddies by using a global uniform grid of 1.25 km or a telescoping grid with the finest grid spacing at 530 m, the latter coupled to a uniform atmosphere; and (iv) simulate biogeochemistry in an ocean-only simulation integrated for 4 years at 10 km. Comparison of basic features of the climate system to observations reveals no obvious pitfalls, even though some observed aspects remain difficult to capture. The throughput of the coupled 5 km global simulation is 126 simulated days per day employing 21 % of the latest machine of the German Climate Computing Center. Extrapolating from these results, multi-decadal global simulations including interactive carbon are now possible, and short global simulations resolving large eddies in the atmosphere and submesoscale eddies in the ocean are within reach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Weather amd Climate Dynamics Discussion .
    Publication Date: 2020-12-09
    Description: European heat waves have increased during the two recent decades. Particularly 2015 and 2018 were characterized by a widespread area of cold North Atlantic sea surface temperatures (SSTs) in early summer as well as positive surface temperature anomalies across large parts of the European continent during later summer. The European heat wave of 2018 is further suggested to be induced by a quasi-stationary and high-amplified Rossby wave pattern associated with the so-called quasi-resonant amplification (QRA) mechanism. In this study, we evaluate the North Atlantic SST anomalies and the QRA theory as potential drivers for European heat waves for the first time in combination by using the ERA-5 reanalysis product. A composite and correlation study reveals that cold North Atlantic SST anomalies in early summer favour a more undulating jet stream and a preferred trough-ridge pattern in the North Atlantic–European sector. Further we found that cold North Atlantic SSTs promote a stronger double jet occurrence in this sector. Thus, favorite conditions for a QRA signature are evident together with a necessary preconditioning of a double jet. However, our wave analysis covering two-dimensional probability density distributions of phase speed and amplitude does not confirm a relationship between cold North Atlantic SSTs and the QRA theory, compositing cold SSTs, high double jet indices (DJIs) or both together. Instead, we can show that cold North Atlantic SST events enhance the dominance of transient waves. In the presence of a trough during cold North Atlantic events, we obtain a slow-down of the transient waves, but not necessarily an amplification or stationarity. The deceleration of the transient waves result in a longer duration of a trough over the North Atlantic accompanied by a ridge downstream over Europe, triggering European heat episodes. Although a given DJI preconditioning may also be subject to the onset of certain QRA events, our study found no general relation between cold North Atlantic SST events and the QRA diagnostics. Our study highlights the relevance of cold North Atlantic SSTs for the onset of high European temperatures by affecting travelling jet stream undulations (but without involving QRA in general). Further attention should be drawn not only to the influence of North Atlantic SST year-to-year variability, but also to the effect of the North Atlantic warming hole as a negative SST anomaly in the long term, which is projected to evolve through climate change.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-09-24
    Description: During the DRIVE (Diurnal and Regional Variability of Halogen Emissions) ship campaign we investigated the variability of the halogenated very short-lived substances (VSLS) bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) in the marine atmospheric boundary layer in the eastern tropical and subtropical North Atlantic Ocean during May/June 2010. The highest VSLS mixing ratios were found near the Mauritanian coast and close to Lisbon (Portugal). With backward trajectories we identified predominantly air masses from the open North Atlantic with some coastal influence in the Mauritanian upwelling area, due to the prevailing NW winds. The maximum VSLS mixing ratios above the Mauritanian upwelling were 8.92 ppt for bromoform, 3.14 ppt for dibromomethane and 3.29 ppt for methyl iodide, with an observed maximum range of the daily mean up to 50% for bromoform, 26% for dibromomethane and 56% for methyl iodide. The influence of various meteorological parameters - such as wind, surface air pressure, surface air and surface water temperature, humidity and marine atmospheric boundary layer (MABL) height - on VSLS concentrations and fluxes was investigated. The strongest relationship was found between the MABL height and bromoform, dibromomethane and methyl iodide abundances. Lowest MABL heights above the Mauritanian upwelling area coincide with highest VSLS mixing ratios and vice versa above the open ocean. Significant high anti-correlations confirm this relationship for the whole cruise. We conclude that especially above oceanic upwelling systems, in addition to sea-air fluxes, MABL height variations can influence atmospheric VSLS mixing ratios, occasionally leading to elevated atmospheric abundances. This may add to the postulated missing VSLS sources in the Mauritanian upwelling region (Quack et al., 2007).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-02-08
    Description: Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50% between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2022-02-18
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-01-08
    Description: Ice sheet numerical modeling is an important tool to estimate the dynamic contribution of the Antarctic ice sheet to sea level rise over the coming centuries. The influence of initial conditions on ice sheet model simulations, however, is still unclear. To better understand this influence, an initial state intercomparison exercise (initMIP) has been developed to compare, evaluate, and improve initialization procedures and estimate their impact on century-scale simulations. initMIP is the first set of experiments of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), which is the primary Coupled Model Intercomparison Project Phase 6 (CMIP6) activity focusing on the Greenland and Antarctic ice sheets. Following initMIP-Greenland, initMIP-Antarctica has been designed to explore uncertainties associated with model initialization and spin-up and to evaluate the impact of changes in external forcings. Starting from the state of the Antarctic ice sheet at the end of the initialization procedure, three forward experiments are each run for 100 years: a control run, a run with a surface mass balance anomaly, and a run with a basal melting anomaly beneath floating ice. This study presents the results of initMIP-Antarctica from 25 simulations performed by 16 international modeling groups. The submitted results use different initial conditions and initialization methods, as well as ice flow model parameters and reference external forcings. We find a good agreement among model responses to the surface mass balance anomaly but large variations in responses to the basal melting anomaly. These variations can be attributed to differences in the extent of ice shelves and their upstream tributaries, the numerical treatment of grounding line, and the initial ocean conditions applied, suggesting that ongoing efforts to better represent ice shelves in continental-scale models should continue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 13 (18). pp. 9439-9446.
    Publication Date: 2019-09-23
    Description: This special section of Atmospheric Chemistry and Physics gives an overview of scientific results, collected during a West Pacific ship expedition in October 2009 with the Research Vessel (R/V) Sonne. The cruise focussed on chemical interactions between the ocean surface and the atmosphere above the tropical West Pacific and was planned within the national research project TransBrom (www.geomar.de/~transbrom). TransBrom aimed to particularly investigate very short lived bromine compounds in the ocean and their transport to and relevance for the stratosphere. For this purpose, chemical and biological parameters were analysed in the ocean and in the atmosphere, accompanied by a high frequency of meteorological measurements, to derive new insights into the multidisciplinary research field. This introduction paper presents the scientific goals and the meteorological and oceanographic background. The main research findings of the TransBrom Sonne expedition are highlighted.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-02-06
    Description: The climate research community uses atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere, yet different reanalyses may give very different results for the same diagnostics. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare reanalysis data sets using a variety of key diagnostics. The objectives of this project are to identify differences among reanalyses and understand their underlying causes, to provide guidance on appropriate usage of various reanalysis products in scientific studies, particularly those of relevance to SPARC, and to contribute to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. The project focuses predominantly on differences among reanalyses, although studies that include operational analyses and studies comparing reanalyses with observations are also included when appropriate. The emphasis is on diagnostics of the upper troposphere, stratosphere, and lower mesosphere. This paper summarizes the motivation and goals of the S-RIP activity and extensively reviews key technical aspects of the reanalysis data sets that are the focus of this activity. The special issue "The SPARC Reanalysis Intercomparison Project (S-RIP)" in this journal serves to collect research with relevance to the S-RIP in preparation for the publication of the planned two (interim and full) S-RIP reports.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-09-23
    Description: A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-01-08
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and assess the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimates of the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes, forcings employed and initial states of ice sheet models. This study presents results from ice flow model simulations from 13 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100 as part of the Ice Sheet Model Intercomparison for CMIP6 (ISMIP6). They are forced with outputs from a subset of models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), representative of the spread in climate model results. Simulations of the Antarctic ice sheet contribution to sea level rise in response to increased warming during this period varies between −7.8 and 30.0 cm of sea level equivalent (SLE) under Representative Concentration Pathway (RCP) 8.5 scenario forcing. These numbers are relative to a control experiment with constant climate conditions and should therefore be added to the mass loss contribution under climate conditions similar to present-day conditions over the same period. The simulated evolution of the West Antarctic ice sheet varies widely among models, with an overall mass loss, up to 18.0 cm SLE, in response to changes in oceanic conditions. East Antarctica mass change varies between −6.1 and 8.3 cm SLE in the simulations, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional simulated mass loss of 28 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the climate forcing, the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 climate models show an additional mass loss of 0 and 3 cm of SLE on average compared to simulations done under present-day conditions for the two CMIP5 forcings used and display limited mass gain in East Antarctica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-01-04
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and inform on the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimated the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes and the forcings employed. This study presents results from 18 simulations from 15 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100, forced with different scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) representative of the spread in climate model results. The contribution of the Antarctic ice sheet in response to increased warming during this period varies between −7.8 and 30.0 cm of Sea Level Equivalent (SLE). The evolution of the West Antarctic Ice Sheet varies widely among models, with an overall mass loss up to 21.0 cm SLE in response to changes in oceanic conditions. East Antarctica mass change varies between −6.5 and 16.5 cm SLE, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional mass loss of 8 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 AOGCMs show an overall mass loss of 10 mm SLE compared to simulations done under present-day conditions, with limited mass gain in East Antarctica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2022-02-18
    Keywords: ddc:300
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2022-02-18
    Description: Die Energieeinsparverordnung (EnEV) adressiert die Energieeffizienz sowohl der Gebäudehülle als auch der Anlagentechnik - die Anlagen ihrerseits werden mit Energieträgern betrieben, die mittels Primärenergiefaktoren (PEF) untereinander vergleichbar gemacht werden. Im Rahmen der EnEV müssen bestimmte Grenzwerte bei den Bauteilen und / oder beim Primärenergiebedarf des Gesamtgebäudes eingehalten werden. Da die Primärenergiefaktoren einen entscheidenden Einfluss auf die Größe des zu berechnenden Jahres-Primärenergiebedarfs haben, hat ihre Festlegung Auswirkung auf die Wahl von Heizungstechnologien und deren Energieträger bzw. auf das Binnenverhältnis von Maßnahmen zur Steigerung der Energieeffizienz bei Gebäudehülle und Anlagentechnik. Vor diesem Hintergrund werden in der Studie die Definition und Bedeutung der Primärenergiefaktoren sowie ihre Steuerungswirkung in Richtung Klimaschutzziele (CO2) und weiterer Ziele untersucht. Das Ergebnis der Studie zeigt, dass insbesondere aus den folgenden beiden Gründen eine Neujustierung beim PEF im Rahmen der EnEV erforderlich scheint: 1) Der Primärenergiefaktor ist in vielen Fällen kein geeignetes Maß zur Bestimmung der Treibhausgasemissionen eines Heizungssystems oder eines Endenergieträgers und hat damit in Bezug auf den Klimaschutz nur eine bedingte Lenkungswirkung. 2) Primärenergiefaktoren (PEFne), die Null betragen (Beispiel Fernwärme), nahe Null liegen (Beispiel Holz) oder perspektivisch gegen Null laufen (Beispiel Strom), verlieren ihre Steuerungswirkung für die Energieeffizienz von Gebäuden. Auch wenn dadurch die formalen Ansprüche an die Bilanzierung von Gebäuden erfüllt werden, werden doch andere wichtige Aspekte wie z. B. die Ressourcenverfügbarkeit und Importabhängigkeit von Energieträgern oder andere mit der Primärenergiebereitstellung verbundene Effekte vernachlässigt. In dem Diskussionspapier werden daher erste Ansätze skizziert, wie der PEF in der EnEV methodisch sinnvollerweise weiterentwickelt werden könnte bzw. ob ggf. weitere oder andere Indikatoren zur Charakterisierung der ökologischen Performance von Gebäuden herangezogen werden sollten.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2022-02-18
    Description: Für die Umsetzung der Energiewende und speziell den Ausbau erneuerbarer Energien sind nicht nur energiewirtschaftliche oder Klimaschutz-Kriterien maßgeblich. Zu einer umfassenden Nachhaltigkeitsbewertung gehört unter anderem auch die Ressourcenbewertung. Hier ist unstrittig, dass die Gesamt-Ressourceninanspruchnahme eines Energiesystems generell erheblich niedriger ist, wenn dieses nicht auf fossilen, sondern auf erneuerbaren Energien basiert (und dabei nicht hauptsächlich auf Biomasse ausgerichtet ist). Bisher wurde jedoch insbesondere der Verbrauch und die langfristige Verfügbarkeit der mineralischen Rohstoffe, die in der Regel zur Herstellung von Energiewandlern und Infrastruktur benötigt werden, wenig untersucht. Im Rahmen des Projekts KRESSE wurde daher erstmals analysiert, welche "kritischen" mineralischen Rohstoffe für die Herstellung von Technologien, die Strom, Wärme und Kraftstoffe aus erneuerbaren Energien erzeugen, bei einer zeitlichen Perspektive bis zum Jahr 2050 in Deutschland relevant sind. Die Einschätzung als "kritisch" umfasst dabei die langfristige Verfügbarkeit der identifizierten Rohstoffe, die Versorgungssituation, die Recyclingfähigkeit und die Umweltbedingungen der Förderung. Die Studie macht deutlich, dass die geologische Verfügbarkeit mineralischer Rohstoffe für den geplanten Ausbau der erneuerbaren Energien in Deutschland grundsätzlich keine limitierende Größe darstellt. Dabei kann jedoch möglicherweise nicht jede Technologievariante unbeschränkt zum Einsatz kommen.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2022-02-18
    Description: Im Forschungsprojekt "Landscaping" untersuchte das Wuppertal Institut die für Nordrhein-Westfalen aus heutiger Sicht denkbaren Technologieansätze, die dafür nötigen politischen Rahmenbedingungen sowie mögliche Innovationen entlang der Wertschöpfungsketten. Bestandteil des Berichts sind Steckbriefe, in denen die möglichen Technologien für treibhausgasneutrale Industrieprozesse samt offener Forschungsfragen und Infrastrukturbedarfe dargestellt sind. Das Projekt entstand im Auftrag des Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie des Landes Nordrhein-Westfalen.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 14 (6). pp. 1349-1364.
    Publication Date: 2020-02-06
    Description: Ocean eddies can both trigger mixing (during their formation and decay) and effectively shield water encompassed from being exchanged with ambient water (throughout their lifetimes). These antagonistic effects of eddies complicate the interpretation of synoptic snapshots typically obtained by ship-based oceanographic measurement campaigns. Here we use a coupled physical–biogeochemical model to explore biogeochemical dynamics within anticyclonic eddies in the eastern tropical South Pacific Ocean. The goal is to understand the diverse biogeochemical patterns that have been observed at the subsurface layers of the anticyclonic eddies in this region. Our model results suggest that the diverse subsurface nutrient patterns within eddies are associated with the presence of water masses of different origins at different depths.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Atmospheric Chemistry and Physics, 8 . pp. 813-823.
    Publication Date: 2019-07-03
    Description: A long-term climatology of air mass transport through the tropical tropopause layer (TTL) is presented, covering the period from 1962–2005. The transport through the TTL is calculated with a Lagrangian approach using radiative heating rates as vertical velocities in an isentropic trajectory model. We demonstrate the improved performance of such an approach compared to previous studies using vertical winds from meteorological analyses. Within the upper part of the TTL, the averaged diabatic ascent is 0.5 K/day during Northern Hemisphere (NH) winters 1992–2001. Climatological maps show a cooling and strengthening of this part of the residual circulation during the 1990s and early 2000s compared to the long-term mean. Lagrangian cold point (LCP) fields show systematic differences for varying time periods and natural forcing components. The interannual variability of LCP temperature and density fields is found to be influenced by volcanic eruptions, El Niño Southern Oscillation (ENSO), Quasi-Biennial Oscillation (QBO) and the solar cycle. The coldest and driest TTL is reached during QBO easterly phase and La Niña over the western Pacific, whereas during volcanic eruptions, El Niño and QBO westerly phase it is warmer and less dry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-02-08
    Description: Carbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have gained interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2 uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished, mainly ship-borne measurements in seawater and the marine boundary layer for both gases, available at https://doi.pangaea.de/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e. cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2024-02-07
    Description: We resolve a previously unrecognized shallow subducting seamount from a re-processed multichannel seismic depth image crossing the 1994 M7.8 Java tsunami earthquake slip area. Seamount subduction is related to the uplift of the overriding plate by lateral shortening and vertical thickening, causing pronounced back-thrusting at the landward slope of the forearc high and the formation of splay faults branching off the landward flank of the subducting seamount. The location of the seamount in relation to the 1994 earthquake hypocentre and its co-seismic slip model suggests that the seamount acted as a seismic barrier to the up-dip co-seismic rupture propagation of this moderate size earthquake. The wrapping of the co-seismic slip contours around the seamount indicates that it diverted rupture propagation, documenting the control of forearc structures on seismic rupture.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-10-20
    Description: Parameterizations of surface ocean isoprene concentrations are numerous, despite the lack of source/sink process understanding. Here we present isoprene and related field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean to investigate the production and consumption rates in two contrasting regions, namely oligotrophic open ocean and the coastal upwelling region. Our data show that the ability of different phytoplankton functional types (PFTs) to produce isoprene seems to be mainly influenced by light, ocean temperature, and salinity. Our field measurements also demonstrate that nutrient availability seems to have a direct influence on the isoprene production. With the help of pigment data, we calculate in-field isoprene production rates for different PFTs under varying biogeochemical and physical conditions. Using these new calculated production rates, we demonstrate that an additional significant and variable loss, besides a known chemical loss and a loss due to air–sea gas exchange, is needed to explain the measured isoprene concentration. We hypothesize that this loss, with a lifetime for isoprene between 10 and 100 days depending on the ocean region, is potentially due to degradation or consumption by bacteria.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-07-07
    Description: The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 (6). pp. 1967-1981.
    Publication Date: 2017-11-28
    Description: Bromoform (CHBr3) is one important precursor of atmospheric reactive bromine species that are involved in ozone depletion in the troposphere and stratosphere. In the open ocean bromoform production is linked to phytoplankton that contains the enzyme bromoperoxidase. Coastal sources of bromoform are higher than open ocean sources. However, open ocean emissions are important because the transfer of tracers into higher altitude in the air, i.e. into the ozone layer, strongly depends on the location of emissions. For example, emissions in the tropics are more rapidly transported into the upper atmosphere than emissions from higher latitudes. Global spatio-temporal features of bromoform emissions are poorly constrained. Here, a global three-dimensional ocean biogeochemistry model (MPIOM-HAMOCC) is used to simulate bromoform cycling in the ocean and emissions into the atmosphere using recently published data of global atmospheric concentrations (Ziska et al., 2013) as upper boundary conditions. Our simulated surface concentrations of CHBr3 match the observations well. Simulated global annual emissions based on monthly mean model output are lower than previous estimates, including the estimate by Ziska et al. (2013), because the gas exchange reverses when less bromoform is produced in non-blooming seasons. This is the case for higher latitudes, i.e. the polar regions and northern North Atlantic. Further model experiments show that future model studies may need to distinguish different bromoform-producing phytoplankton species and reveal that the transport of CHBr3 from the coast considerably alters open ocean bromoform concentrations, in particular in the northern sub-polar and polar regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...